Title

互補式金屬氧化物半導體製程單光子累崩光偵測器特性與其應用

Translated Titles

Characteristic and Application of Single Photon Avalanche Photodiode with Complementary Metal-Oxide-Semiconductor Process

DOI

10.6842/NCTU.2015.00166

Authors

巫朝陽

Key Words

偵測器 ; 累崩 ; 單光子 ; detector ; avalanche ; single photon

PublicationName

交通大學電子工程系所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

博士

Advisor

林聖廸

Content Language

英文

Chinese Abstract

單光子累崩偵測器具有極高的光靈敏度與時間解析度,利用其特性在生物螢光生命解析影像與測距影像的應用是近來熱門的研究。在本論文中利用TCAD模擬元件內部特性下,透過台積電不同製程設計單光子累崩偵測器元件,再透過自行架設的量測系統定義出元件的特性。單光子累崩偵測器有幾個重要的特性定義參數,分別為暗計數(Dark Count Rate)、光偵測率(Photon Detection Efficiency)、時間抖動(Jitter)、二次崩潰(After-pulsing),本論文首先介紹為了量測以上參數所自行架設的自動化量測系統,並說明如何準確地獲知元件的優越與差別。 在台積電標準0.18 um 互補式金屬氧化物半導體高頻製程中,利用其三個不同載子類型與濃度的佈值濃度井設計並比較了兩種崩潰電壓分別為10 V與20 V的元件。另外透過元件設計的技巧來降低元件暗計數,與嘗試著設計陣列中能有較高填充率(Fill Factor)的元件佈局。另外利用有較多不同的佈值濃度井的0.18 um 互補式金屬氧化物半導體高壓製程,設計了具有不同崩潰電壓的元件。並且,我們亦設計具有不同主動區深度的元件,使其能有不同響應特性;依據元件崩潰電壓與暗計數的關係可做穿隧效應在其中扮演的重要性的探討。 由於單光子累崩偵測器操作在極強的電場下,其主動區的電場需有均勻的分佈如此在實際應用中才能有一致的表現。 本論文中利用自行架設的二維光計數掃描量測,針對兩個分別具有高崩潰電壓與低崩潰電壓元件的電場分佈特性進行分析探討。本論文發現高崩潰電壓元件存在著與深度相關的電場分佈均勻度,而低崩潰電壓的元件保持相當均勻的電場分佈。 最後,本論文以低暗計數互補式金屬氧化物半導體單光子累崩偵測器與市售的砷化鎵銦單光子累崩偵測器作為輻射溫度計,並比較了分別以兩種偵測器量測輻射溫度之實驗與理論結果。根據實驗結果,發現單光子累崩偵測器作為輻射溫度計感測器比以往所用的電子耦合元件具有更高的靈敏性。將互補式金屬氧化物半導體累崩偵測器元件特性增強並配合電路設計,其所開發出的影像陣列期望能作為具有大溫度範圍與同時利用元件高時間解析度特性測得偵測物之距離的熱影像照相機。

English Abstract

The single photon avalanche photodiode (SPAD) exhibits ultra high photon sensitivity and timing resolution, hence it is currently being studied and used for the applications of biological fluorescence lifetime imaging microscopy and range-finder imaging. With this aim, in this thesis we use the Technology Computer Aided Design (TCAD) to simulate the characteristics of SPAD, design structures of SPAD with different processes in TSMC, and characterize them by our measurement systems. We characterize SPADs with several important parameters, including the dark count rate (DCR), photon detection efficiency (PDE), timing jitter, and after-pulsing. This thesis introduces the measurement setups that can automatically acquire above parameters for evaluating the performance of various devices. We design and compare two SPAD devices with breakdown voltage (VBre) of 10 V and 20 V by three different wells with different types of carriers and doping concentrations in TSMC 0.18 um complementary metal-oxide-semiconductor (CMOS) RF process. We design several structures to reduce the sources of DCR of SPAD device and modify the device layout for improving the fill factor of an array. Furthermore, we design different device structures with various VBre by the use of TSMC 0.18 um CMOS High Voltage process that has more choices of well with different doping concentrations. Among them, there are devices with different depths for the active region, resulting in different photon spectral response. The tunneling effect for devices with various VBre can be further analyzed in characterizing the DCR of these devices. While SPAD is operated based on the ultra high electric field induced avalanche, an uniform electric field distribution is demanded for a consistent response in practical applications. In this thesis, we use the setup of 2D photon count mapping measurement system for examining the uniformity of electric field distribution in two SPADs with respectively high and low VBre. The SPAD with higher VBre has distinct depth-dependent non-uniformity of electric field distribution, but the SPAD with lower VBre has better uniformity of electric field distribution at all depths. In the last part of this thesis, we explore both CMOS SPAD with low DCR and a commercial InGaAs SPAD as a radio thermometer and compare the measurement results to the theoretical calculations. According to the measurement results, the SPAD, as being a radio thermometer, has higher sensitivity than CCD. It is expected that the imaging array based on CMOS SPAD with enhanced performance and specially designed circuit will be a prospective thermal image camera which at the same time can capture the distance information of sensed object due to the high timing resolution of SPAD.

Topic Category 電機學院 > 電子工程系所
工程學 > 電機工程
Reference
  1. [1] R. H. Haitz, “Studies on optical coupling between silicon p-n junctions,”Solid-State Electronics, vol. 8, pp. 417–425, Sept. 1965.
    連結:
  2. [3] S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” Journal of Modern Optics, vol. 51, pp. 1267–1288, June 2004.
    連結:
  3. [4] C. Niclass and M. Soga, “A miniature actively recharged single-photon detector free of afterpulsing effects with 6ns dead time in a 0.18 μm CMOS technology,” in Proceedings of IEEE International Electron Devices Meeting,2010.
    連結:
  4. [5] I. Rech, D. Resnati, A. Gulinatti, M. Ghioni, and S. Cova, “Self-suppression of reset induced triggering in picosecond SPAD timing circuits,” Review of Scientific Instruments, vol. 78, no. 086112, pp. 086112–1–086112–3, 2007.
    連結:
  5. [6] A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy,and N. Gisin, “Single photon detector fabricated in a complementary metaloxide-semiconductor high-voltage technology,” Review of Scientific Instruments,vol. 74, pp. 3263–3271, Jul. 2003.
    連結:
  6. [7] R. Walker, J. Richardson, and R. Henderson, “A 128x96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13 μm CMOS imaging technology,” in Proceedings of IEEE Solid-State Circuits Conference Digest of Technical Papers, pp. 410–412, 2011.
    連結:
  7. [8] C. Niclass, M. Soga, H. Matsubara, M.Ogawa, and M.Kagami, “A 0.18 μm CMOS SoC for a 100 m-range 10-frame/s 200 96-pixel time-of flight depth sensor,” in Proceedings of IEEE Solid-State Circuits Conference Digest of Technical Papers, pp. 488–489, 2013.
    連結:
  8. [9] E. Fisher, I. Underwood, and R. K. Henderson, “A reconfigurable singlephoton-counting integrating receiver for optical communications,” IEEE Journal of Solid-State Circuits, vol. 48, pp. 1638–1650, 2013.
    連結:
  9. [10] M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A timeresolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 47, pp. 1394–1407, 2012.
    連結:
  10. [11] Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024 x 8, 700-ps Time-Gated SPAD Line Sensor for Planetary Surface Exploration With Laser Raman Spectroscopy and LIBS,” IEEE Journal of Solid-State Circuits, vol. 49, pp. 179–189, Jan. 2014.
    連結:
  11. [12] N. Dutton, L. A. Grant, and R. Henderson, “9.8 mum SPAD-based analogue single photon counting pixel with bias controlled sensitivity,” in Proceeding of International Image Sensor Workshop, Jau. 2013.
    連結:
  12. [13] C. Veerappan, C. Bruschini, and E. Charbon, “Sensor network architecture for a fully digital and scalable SPAD based PET system,” in IEEE Nuclear Science Symposium Conference Record, pp. 1115–1118, 2012.
    連結:
  13. [14] L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Mas-sari, M.Perenzoni, D.Stoppa, and R.Walker, “An 8x16-pixel 92k SPAD timeresolved sensor with on-pixel 64 ps 12b TDC and 100MS/s real-time energy histogramming in 0.13 μm CIS technology for PET/MRI applications,” in Proceedings of IEEE Solid-State Circuits Conference Digest of Technical Papers, pp. 486–487, 2013.
    連結:
  14. [15] F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sensors and Actuators, A: Physical,vol. 140, pp. 103–112, Oct. 2007.
    連結:
  15. [16] T. Frach, G. Prescher, C. Degenhardt, R. D. Gruyter, S. A., and R. Ballizany,“The digital silicon photomultiplier - Principle of operation and intrinsic detector performance,” in Proc. of IEEE Nuclear Science Symposium, pp. 1959–1965, Oct. 2009.
    連結:
  16. [17] S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Review of Scientific Instruments, vol. 52,pp. 408–412, Mar. 1981.
    連結:
  17. [18] R. J. McIntyre, “Recent developments in silicon avalanche photodiodes,”Measurement, vol. 3, no. 4, pp. 146–152, 1985.
    連結:
  18. [19] E. Charbon and M. W. Fishburn, Monolithic Single-Photon Avalanche Diodes: SPADs, ch. 7, pp. 123–156. Springer, 2011.
    連結:
  19. [20] R. H. Haitz, “Model for the elelectrical behavior of a microplasma,” Journal of Applied Physics, vol. 35, pp. 1370–1377, May 1964.
    連結:
  20. [21] A. Ingargiola, M. Assanelli, I. Rech, A. Gallivanoni, M. Ghioni, and S. Cova,“Avalanche buildup and propagation effects on photon-timing jitter in Si-SPAD with non-uniform electric field,” in Proceeding of SPIE Advanced Photon Counting Techniques III, vol. 7320, pp. 73200K1–73200K–12, April 2009.
    連結:
  21. [22] S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Applied Optics, vol. 35, pp. 1956–1976, Apr. 1996.
    連結:
  22. [25] A. Rochas, Single-Photon Avalanche Diodes in CMOS Technology. PhD thesis, EPFL, Lausanne,Switzerland, 2003.
    連結:
  23. [26] A. Tosi, A. D. Frera, A. B. Shehata, and C. Scarcella, “Fully programmable single-photon detection module for InGaAs/InP single-photon avalanche diodes with clean and sub-nanosecond gating transitions,” Review of Scientific Instruments, vol. 83, no. 1, pp. 013104–1–013104–9, 2012.
    連結:
  24. [27] S. Cova, A. Lacaita, and G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosenano scale,” IEEE Electron Device Letters, vol. 12, pp. 685–687, Dec. 1991.
    連結:
  25. [28] A. C. Giudice, M. Ghioni, S. Cova, and F. Zappa, “A process and deep level evaluation tool: afterpulsing in avalanche junctions,” in Proc. of IEEE European Solid-State Device Research, 2003, pp. 347–350, Sep. 2003.
    連結:
  26. [30] J. S. Lee, R. I. Hornsey, and D. Renshaw, “analysis of CCMOS photodiodespart I: quantum efficiency,” IEEE Transactions on Electron Devices, vol. 50, pp. 1233–1238, May 2003.
    連結:
  27. [31] A. Lacaita, M. Mastrapasqua, M. Ghioni, and S. Vanoli, “Observation of avalanche propagation by multiplication assisted diffusion in p-n junctions,” Applied Physics Letters, vol. 57, p. 489, May 1990.
    連結:
  28. [32] A. Lacaita and M. Mastrapasqua, “Strong dependence of time resolution on detector diameter in single photon avalanche diodes,” Electronics Letters, vol. 26, pp. 2053–2054, Nov. 1990.
    連結:
  29. [33] A. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, “On the bremsstrahlung origin of hot-carrier-induced photons in silicon devices,” IEEE Transactions
    連結:
  30. [34] A. Gulinatti, P. Maccagnani, I. Rech, and S. Cova, “35 ps time resolution at room temperature with large area single photon avalanche diodes,” Electronics Letters, vol. 41, pp. 272–274, Mar. 2005.
    連結:
  31. [35] M. Assanelli, A. Ingargiola, I. Rech, A. Gulinatti, and M. Ghioni, “Photontiming jitter dependence on injection position in single-photon avalanche diodes,” IEEE Journal of Quantum Electronics, vol. 47, pp. 151–159, Feb.2011.
    連結:
  32. [36] A. Lacaita, M. Ghioni, and S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electronics Letters, vol. 25, pp. 841–843, Jun.1989.
    連結:
  33. [37] A. Lacaita, S. Cova, M. Ghioni, and F. Zappa, “single-photon avalanche diode with ultrafast pulse response free from slow tails,” IEEE Electron Device Letters, vol. 14, pp. 360–362, Jul. 1993.
    連結:
  34. [38] E. A. Webster, L. A. Grant, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44 % photon detection efficiency at 690 nm,” IEEE Electron Device Letters, vol. 33, pp. 694–696, May 2012.
    連結:
  35. [39] C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and Characterization of a CMOS 3-D Image Sensor Based on Single Photon Avalanche Diodes,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 1847–1854, Sep.2005.
    連結:
  36. [40] E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Letters, vol. 33, pp. 589–591, Nov 2012.
    連結:
  37. [41] H. Finkelstein, M. J. Hsu, and S. C. Esener, “Dual-junction single-photon avalanche diode,” Electronics Letters, vol. 43, pp. 1228–1229, Oct. 2007.
    連結:
  38. [42] R. K. Henderson, E. Webster, and L. A. Grant, “”a dual-junction single photon avalanche diode in 130-nm cmos technology”,” IEEE Electron Device Letters, vol. 34, pp. 429–431, Mar. 2013.
    連結:
  39. [43] V. Savuskan, M. Javitt, G. Visokolov, I. Brouk, and Y. Nemirovsky, “”selecting single photon avalanche diode (spad) passive-quenching resistance:an approach”,” IEEE Sensors Journal, vol. 13, pp. 2322–2328, Jun. 2013.
    連結:
  40. [44] D. Renker, “Geiger-mode avalanche photodiodes, history, properties and problems,” Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, vol. 567,pp. 48–56, 2006.
    連結:
  41. [45] J. C. Campbell, “Recent advances in telecommunications avalanche photodiodes,”Journal of Lightwave Technology, vol. 25, pp. 109–121, Jan. 2007.
    連結:
  42. [46] C. Niclass, A. Rochas, P. A. Besse, R. Popovic, and E. Charbon, “ A 4 μs integration time imager based on CMOS single photon avalanche diode technology ,” Sensors and Actuators, A: Physical, vol. 130-131, pp. 273–281,March 2006.
    連結:
  43. [47] P. K. Lu, “Temporal characteristics of photo-counts and dark counts in single photon avalanche diodes,” Master’s thesis, National Chiao Tung University,Jul. 2014.
    連結:
  44. [48] J. C. Campbell, W. Sun, Z. Lu, M. A. Itzler, and X. Jiang, “Common-mode cancellation in sinusoidal gating with balanced InGaAs/InP single photon avalanche diodes,” IEEE Journal of Quantum Electronics, vol. 48, pp. 1505–1511, Dec. 2012.
    連結:
  45. [50] E. A. Webster and R. K. Henderson, “A TCAD and spectroscopy study of dark count mechanisms in single-photon avalanche diodes,” IEEE Transactions on Electron Devices, vol. 60, pp. 4014–4019, 2013.
    連結:
  46. [51] E. A. G. Webster, L. A. Grant, and R. K. Henderson, “Transient Single Photon Avalanche Diode Operation, Minority Carrier Effects and Bipolar Latch Up,” IEEE Transactions on Electron Devices, vol. 60, pp. 1188–1194,Mar. 2013.
    連結:
  47. [52] F. P. Chou, G. Y. Chen, C. W. Wang, Y. C. Liu, W. K. Huang, and Y. M. Hsin, “Silicon photodiodes in standard CMOS technology,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, pp. 730–740, May 2011.
    連結:
  48. [53] J. Richardson, E. A. G. Webster, L. Grant, and R. Henderson, “Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology,”IEEE Transactions on Electron Devices, vol. 58, pp. 2028–2035, 2011.
    連結:
  49. [54] M. W. Fishburn, Y. Maruyama, and E. Charbon,“Reduction of fixedposition noise in position-sensitive single-photon avalanche diodes,” IEEE Transactions on Electron Devices, vol. 58, pp. 2354–2361, August 2011.
    連結:
  50. [55] M. Dandin and P. Abshire, “High singal-to-noise ratio avalanche photodiodes with perimeter field gate and active readout,” IEEE Electron Device Letters, vol. 33, pp. 570–572, Apr. 2012.
    連結:
  51. [56] R. J. Walker, E. A. G. Webster, N. M. J. Li, and R. K. Henderson, “High fill factor digital silicon photomultiplier structures in 130 nm CMOS imaging technology,” in Proceeding of IEEE Nuclear Science Symposium and MedicalImaging Coference, pp. 1945–1948, Nov. 2012.
    連結:
  52. [57] J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Optics Express, vol. 22, pp. 4202–2413, Feb 2014.
    連結:
  53. [58] M. J. Hsu, H. Finkelstein, and S. C. Esener, “A CMOS STI-bound singlephoton avalanche diode with 27-ps timing resolution and a reduced diffusion tail,” IEEE Electron Device Letters, vol. 30, pp. 641–643, Jun 2009.
    連結:
  54. [59] M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. K.Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electronics,vol. 53, no. 7, pp. 803–808, 2009.
    連結:
  55. [60] C. Niclass, M. Gersbacha, R. Henderson, L. Grant, and E. Charbon, “A single photon avalanche diode Implemented in 130-nm CMOS technology ,”IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, pp. 863–869, Jul. 2007.
    連結:
  56. [63] M. A. Karami, M. Gersbach, H. J. Yoon, and E. Charbon, “A new singlephoton avalanche diode in 90nm standard CMOS technology,” Optics Express, vol. 18, pp. 22158–22166, Oct. 2010.
    連結:
  57. [64] E. Charbon, H. J. Yoon, and Y. Maruyama, “A Geiger mode APD fabricated in standard 65nm CMOS technology,” in Proceeding of IEEE International Electron Devices Meeting, 2013.
    連結:
  58. [66] C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35 μm CMOS and based on an event-driven readout for TCSPC experiments,” in Proceeding of SPIE Advanced Photon Counting Techniques III, vol. 6372, pp. 63720S–1–63720S–12, October 2006.
    連結:
  59. [67] H. I. Kwon, I. M. Kang, B. G. Park, J. D. Lee, and S. S. Park, “The analysis of dark signals in the CMOS APSimagers from the characterization of test structures,” IEEE Transactions on Electron Devices, vol. 51, pp. 178–184,Feb. 2004.
    連結:
  60. [69] V. Savuskan, I. Brouk, M. Javitt, and Y. Nemirovsky, “An estimation of single photon avalanche diode (SPAD) photon detection efficiency (PDE) non-uniformity,” IEEE Sensors Journal, vol. 13, pp. 1637–1640, 2013.
    連結:
  61. [72] J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O.Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photonics Technology Letters, vol. 16, pp. 1721–1723, July 2004.
    連結:
  62. [73] A. Tosi, F. Acerbi, A. D. Mora, M. A. Itzler, and X. Jiang, “Active area uniformity of InGaAs/InP single-photon avalanche diodes,” IEEE Photonics Journal, vol. 3, pp. 31–42, February 2011.
    連結:
  63. [74] F. Z. Hsu, J. Y. Wu, and S. D. Lin, “Low-noise single-photon avalanche diodes in 0.25 μm high-voltage CMOS technology,” Optics Letters, vol. 38,pp. 55–57, 2013.
    連結:
  64. [75] L. Pancheri and D. Stoppa, “Low-Noise CMOS single-photon avalanche diodes with 32 ns dead time,” in Proceedings of IEEE Europen Solid State Device Research Conference, pp. 362–365, September 2007.
    連結:
  65. [76] C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256×64-pixel single-photonimager in CMOS for a MEMS-based laser scanning time-of-flight sensor,”Optics Express, vol. 20, pp. 11863–11881, 2012.
    連結:
  66. C. Bruschini, and E. Charbon, “Characterization of large-scale nonuniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proceedings of IEEE Europen Solid State Device Research Conference,pp. 331–334, 2011.
    連結:
  67. [78] N. Faramarzpour, M. J. Deen, S. Shirani, and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology,”IEEE Transactions on Electron Devices, vol. 55, pp. 760–767, 2008.
    連結:
  68. [79] S. Radovanovic, High-speed photodiodes in standard CMOS technology. PhD thesis, Twente, Enschede, The Nether-lands, 2004.
    連結:
  69. [80] G. Chynoweth and K. G. McKay, “Photon emission from avalanche breakdown in silicon,” Physical Review, vol. 102, pp. 369–376, 1956.
    連結:
  70. [81] G. L. Teh, W. K. Chim, Y. K. Swee, and Y. K. Co, “Spectroscopic photon emission measurements of n-channel MOSFET’s biased into snapback breakdown using a continuous-pulsing transmission line technique ,” Semiconductor Science and Technology, vol. 12, pp. 662–671, 1997.
    連結:
  71. [82] O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Transactions on Electron Devices,vol. 57, pp. 2227–2234, 2010.
    連結:
  72. [83] D. Lausch, K. Petter, H. V. Wenckstern, and M. Grundmann, “Correlation of pre-breakdown sites and bulk defects in multicrystalline silicon solar cells,”Physica Status Solidi (RRL) -Rapid Reserach Letters, vol. 3, no. 2-3, pp. 70–72, 2009.
    連結:
  73. [84] V. Ryzhii, “Characteristics of quantum well infrared photodetectors,” Journal of Applied Physics, vol. 81, pp. 6442–6449, May 1997.
    連結:
  74. [85] A. Goldberg, S. Kennerly, J. Little, T. Shafer, C. Mears, H. Schaake, M. Winn, M. Taylor, and P. Uppal, “Comparison of HgCdTe and quantumwell infrared photodetector dual-band focal plane arrays,” Optical Engineering, vol. 42, pp. 30–46, Jan 2003.
    連結:
  75. [87] P. J. Moore and F. Harscoet, “Low cost thermal imaging for power systems applications using a conventional CCD camera,” in Proceedings of Energy Management and Power Delivery, vol. 2, pp. 589–594, Mar 1998.
    連結:
  76. [88] T. Sentenac, Y. L. Maoultt, G. Rolland, and M. Devy, “Temperature correction of radiometric and geometric models for an uncooled CCD camerain the near infrared,” IEEE Transactions on Instrumentation and Measurement,vol. 52, pp. 46–60, Feb 2003.
    連結:
  77. [90] G. Zauner and G. Hendorfer, “Multiresolution denoising of CCD thermalimages for improved spatial temperature resolution,” in Proceeding of SPIE Wavelet Applications in Industrial Processing III, vol. 6001, pp. 60010C–1–60010C–10, Oct 2005.
    連結:
  78. [91] S. Dhokkar, B. Serio, P. Lagonotte, and P. Meyrueis, “Power transistor nearinfrared microthermography using an intensified CCD camera and frame
    連結:
  79. [92] B. Serio, J. Hunsinger, F. Conseil, P. Derderian, D. Collard, L. Buchaillot,and M. Ravat, “Near infrared thermography using an intensified CCD camera: application in non-destructive high resolution evaluation of electrothermally actuated MEMS,” in Proceeding of SPIE Optical Measurement
    連結:
  80. [93] A. Eisele, R. Henderson, B. Schmidtke, T. Funk, L. A. Grant, J. Richardson, and W. Freude, “185 MHz count rate, 139 dB dynamic rangesingle-photon avalanche diode with active quenching circuit in 130 nm CMOS technology,” in Proceeding of International Image Sensor Workshop, vol. R43, pp. 278–280, 2011.
    連結:
  81. [95] A. Fisenko and S. Ivashov, “Determination of the true temperature of emitted radiation bodies from generalized Wien’s displacement law,” Journal of Physics D: Applied Physics, vol. 32, pp. 2882–2885, Sep 1999.
    連結:
  82. [96] F. Meriaudeau, “Real time multispectral high temperature measurement: application to control in thei ndustry,” Image and Vision Computing, vol. 25, pp. 1124–1133, July 2007.
    連結:
  83. [98] S. Dhokkar, P. Lagonotte, and A. Piteau, “Experimental setup for the measurement of local temperature in electronic component during the steady and transient state,” in Proceeding of IEEE 50th Midwest Symposium on Circuits and Systems, pp. 1241–1244, Aug 2007.
    連結:
  84. [99] S. Mandai, M. Fishburn, Y. Maruyama, and E. Charbon, “A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology,” Optics Express, vol. 20, pp. 5849–5857, Mar 2012.
    連結:
  85. [100] A. Tosi, A. D. Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi,L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in timeresolved measurements,” Optics Express, vol. 19, pp. 10735–10746, Mar 2011.
    連結:
  86. [2] P. P. Webb and R. J. McIntyre, “Single photon detection with avalanche photodiodes,” In Bulletin of the American Physical Society, vol. 15, no. 6,p. 813, 1970.
  87. [23] F. Zappa, A. Tosi., A. D. Mora, and S. Tisa, “SPICE modeling of single photon avalanche diodes,” Sensors and Actuators, A: Physical, vol. 153, pp. 197–204, Aug. 2009.
  88. [24] S. M. Sze, Physics of Semiconductor Devices. New York, NY, USA: Wiley, 2nd ed., 1981.
  89. [29] H. Zimmermann, Integrated silicon optoelectronics. Springer, 2nd ed., 2009.
  90. on Electron Devices, vol. 40, pp. 577–582, Mar. 1993.
  91. [49] Synopsys, Mountain View, CA, USA, Sentaurus User Guide, 2011.
  92. [61] K. Cameron, T. Clayton, B. Rae, A. Murray, R. Henderson, and E. Charbon,“Poisson distributed noise generation for spiking neural applications,”in In the Proceedings of IEEE International Symposium on Circuits and Systems, pp. 365–368, May 2010.
  93. [62] T. Clayton, K. Cameron, B. R. Rae, N. Sabatier, E. Charbon, R. K. Henderson, G. Leng, and A. Murray, “An implementation of a spike-response model with escape noise using an avalanche diode,” IEEE Transactions on Biomedical Circuits and Systems, vol. 5, pp. 231–243, June 2011.
  94. [65] D. Bronzi, F. Villa, S. Bellisai, S. Tisa, G. Ripamonti, and A. Tosi, “Figures of merit for CMOS SPADs and arrays,” in Proceeding of SPIE Photon counting applications IV, vol. 8773, pp. 877304–1–877304–7, 2013.
  95. [68] A. G. Andreou, M. A. Marwick, and P. O. Pouliquen, “Deep submicron and nano cos single photon photodetector pixel with event based circuits for readout data-rate reduction communication system,” U.S. Patent No.0245809.
  96. [70] F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Single-photon camera for high-sensitivity high-speed applications,” in Proceeding of SPIE Sensors,Cameras, and Systems for Industrial/Scientific Applications XI, vol. 7536,pp. 753605–1–753605–10, 2010.
  97. [71] D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G.-F. D. Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,”IEEE Transactions on Circuits and Systems, vol. 54, pp. 4–12, Jan 2007.
  98. [77] C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson,
  99. [86] E. Renier, F. Meriaudeau, P. Suzeau, and F. Truchetet, “CCD temperature imaging: applications in steel industry,” in Proceedings of IEEE Industrial Electronics, Control, and Instrumentation, vol. 2, pp. 1295–1300, August 1996.
  100. [89] G. Zauner, D. Heim, K. Niel, G. Hendorfer, and H. Stoeri, “CCD cameras as thermal imaging devices in heat treatment process,” in Proceeding of SPIE Machine Vision Applications in Industrial Inspection XII, vol. 5303, pp. 81–89, May 2004.
  101. integration,” Measurement Science and Technology, vol. 18, pp. 2689–2697,Aug 2007.
  102. Systems for Industrial Inspection IV, vol. 5856, pp. 819–829, Aug 2005.
  103. [94] R. A. Serway, C. Moses, and C. A. Moyer, Modern Physics. Thomson, 2nd ed., 1997.
  104. [97] http://www.micro-photon-devices.com/Products.
  105. [101] I. Rech, I. Labanca, G. Armellini, A. Gulinatti, M. Ghioni, and S. Cova, “Operation of silicon single photon avalanche diodes at cryogenic temperature,”Review of Scientific Instruments, vol. 78, no. 063105, pp. 063105–1–063105–3, 2007.
Times Cited
  1. 謝惠珺(2014)。顧客心目中最佳茶飲店屬性組合之研究。成功大學企業管理學系學位論文。2014。1-110。 
  2. 鄭貞怡(2012)。臺灣即飲包裝茶特徵價格之研究。臺灣大學農業經濟學研究所學位論文。2012。1-85。 
  3. 王韋仁(2010)。臺灣市售飲料微生物檢測及衛生標準評估。臺灣大學食品科技研究所學位論文。2010。1-106。 
  4. 林雨徵(2015)。台灣巧克力外帶專飲店品牌視覺識別系統分析與創作。中原大學商業設計研究所學位論文。2015。1-90。
  5. 陳艾琪(2017)。行銷策略之研究-以石蓮花蔬果杯企劃案為例。中山大學企業管理學系研究所學位論文。2017。1-145。