Translated Titles

The study of optical modeling of silicate phosphor for white LED.



Key Words

矽酸鹽螢光粉 ; 模型 ; model ; silicate phosphor



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract


English Abstract

In this thesis, we study the optical model to precisely describe optics and color distribution of the lights emitted by a blue LED covered with silicate phosphors. The optical model starts Mie scattering model and Monte Carlo ray tracing to describe the scattering of the lights when they are propagated in the phosphors, and the ray tracing is performed with blue and yellow rays. Through simulation and experimental measurement, we have successfully built an optical model, which can be applied to decide some package parameters in a white LED and to avoid color dispersion of the light pattern. Besides, we observed some interesting effects such as thermal decay and re-absorption of the phosphors. These effects could limit the validity of the optical model and need more study to make the optical model more correct.

Topic Category 理學院 > 光電科學研究所
工程學 > 電機工程
  1. [1] N. Holonyak, Jr., and S. F. Bevaqua, “Coherent(visible) Light Emission From Ga(As1–xPx) Junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
  2. [4] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
  3. [8] A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of mulitichip white solid state lighting source with four or more LEDs,” Proc. SPIE 4445, 148-155 (2001).
  4. [11] A. Zukauskas, Introduction to Solid-State Lighting (John Wiley & Sons, NewYork, 2002).
  5. [12] E. F. Schubert, Light Emitting Diodes (Cambridge University Press, Cambridge, 2003).
  6. [15] N. R. Taskar, R. N. Bhargava, J. Barone, V. Chhabra, V. Chabra, D. Dorman, A. Ekimov, S. Herko, and B. Kulkarni, “Quantum-confined-atom-based nanophosphors for solid state lighting,” Proc. SPIE 5187, 133-141 (2004).
  7. [16] R. Mueller-Mach, G. Mueller, M. Krames, and T. Trottier, “High-power Phosphor-converted Light-Emitting Diodes Based on III- Nitrides,” IEEE J. Sel. Topics Quantum Electron. , 339-345 (2002).
  8. [17] R. Mueller-Mach, G. O. Mueller, and M. R. Krames, “Phosphor materials and combinations for illumination-grade white pcLEDs,” Proc. SPIE 5187, 115-122 (2004).
  9. [19] S. J. Lee, “Analysis of light-emitting diodes bh Monte-Carlo photon simulation,” Appl. Opt. 40, 1427-1437 (2001).
  10. [20] Breault Research Organization, http://www.breault.com/.
  11. [21] D. Toublanc, “Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270-3274 (1996).
  12. [22] J. P. Chevaillier, J. Fabre, and P. Hamelin, “Forward scattered light intensities by a sphere located anywhere in a Gaussian beam,” Appl. Opt. 25,1222-1225 (1986).
  13. [23] 何信穎,白光LED之YAG螢光粉光學模型之研究,國立中央大學光電所碩士論文,中華民國九十六年。
  14. [24] Q. Fu, W. B. Sun, and P. Yang, “Modeling of Scattering and Absorption by Nonspherical Cirrus Ice Particles at Thermal Infrared Wavelengths,” J. Atmos. Sci. 56, 2937-2947 (1999).
  15. [25] P. Yang, B. A. Baum, A. J. Heymsfield, Y. X. Hu, H. Huang, S. Tsay, and S. Ackerman, “Single-scattering properties of droxtals,” J. Quant. Spectrosc. Radiat. Transfer. 79-80, 1159-1169 (2003).
  16. [26] M. Mikrenska, P. Koulev, J. -B. Renard, E. Hadamcik, and J. –C. Worms, “Direct simulation Monte Carlo ray tracing model of light scattering by a class of real particles and comparison with PROGRA2 experimental results,” J. Quant. Spectrosc. Radiat. Transfer. 100, 256-267 (2006).
  17. [27] P. Yang, H. Wei, H. –L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512-5523 (2005).
  18. [28] C. C. Chang, R. Chern, C. C. Chang, C. Chu, J. Y. Chi, J. Su, I-Min Chan, and J. T. Wang, “Monte Carlo Simulation of Optical Properties of Phosphor-Screened Ultraviolet Light in a White Light-Emitting Device,” Jpn. J. Appl. Phys. 44, 6056-6061 (2005).
  19. [30] Q. Fu and W. Sun, “Mie Theory for Light Scattering by a Spherical Particle in an Absorbing Medium,” Appl. Opt. 40, 1354-1361 (2001).
  20. [31] I. W. Sudiarta and P. Chylek, “Mie-scattering formalism for spherical particles embedded in an absorbing medium,” J. Opt. Soc. Am. A 18, 1275-1278 (2001).
  21. [32] Á. Borbély and S. G. Johnson, “Performance of phosphor-coated light-emitting diode optics in ray-trace simulations,” Opt. Eng. 44, 111308-111308-4 (2005).
  22. [34] C. C. Sun, T. -X. Lee, S. -H. Ma, Y. -L. Lee, and S. -M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
  23. [35] N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting Phosphor-Scattered Photons to Improve White LED Efficiency,” Phys. Status Solidi A, 202, R60–R62 (2005).
  24. [36] K. Yamada, Y. Imai, and K. Ishii, “Optical Simulation of Light Source Devices Composed of Blue LEDs and YAG Phosphor,” J. Light & Vis. Env. 27, 70-74 (2003).
  25. [37] D. Kang, E. Wu, and D. Wang, “Modeling white light-emitting diodes with phosphor layers,” Appl. Phys. Lett. 89, 231102 (2006).
  26. [38] N. T. Tran and Frank G. Shi, “Simulation and Experimental Studies of Phosphor Concentration and Thickness for Phosphor-Based White Light-Emitting-Diodes,” IEEE, Microsystems, Packaging, Assembly and Circuits Technology, 255-257 (2007).
  27. [40] C. S. McCamy , “Correlated color temperature as an explicit function of chromaticity coordinates ,” Color Res. Appl. 17, 142-144 (1992).
  28. [41] J. Hernandez-Andres, R. L. Lee, and J. Romero, “Calculating Correlated Color Temperatures Across the Entire Gamut of Daylight and Skylight Chromaticities,” Appl. Opt. 38, 5703-5709 (1999).
  29. [42] Ivan Moreno, Ulises Contreras, ” Color distribution from multicolor LED arrays,” OPTICS EXPRESS, 15, 3607-3618 (2007).
  30. [43] M. Arik, S. Weaver, C. Becker, M. Hsing, and A. Srivastava, “Effects of localized heat generations due to the color conversion in phosphor particles and layers of high brightness light emitting diodes,” Presented at ASME/IEEE Int. Electronic Packaging Technical Conf. and Exhibition—InterPACK''03, 6–11 July, 2003.
  31. [2] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN vased light emitters and lasers (Spinger, 1997).
  32. [3] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
  33. [5] J.Y. Tsao, Light emitting diodes (LEDs) for general illumination: An OIDA technology roadmap update 2002 (Washington, D.C.: Optoelectronics Industry Development Association, 2002).
  34. [6] D. A. Steigerwald, J. C. Bhat, D. Collins, R.M. Fletcher, M.O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “ Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron. 8, 310-320 (2002).
  35. [7] T.F. McNulty et al., “UV reflector and UV-based Light Source Having Reduced UV Radiation Leakage Incorporating The Same,” United States Patent, Us 6686676 B2 (2004).
  36. [9] Stelur et al., “Phosphor Blends for Generating White Light from Near-UV/Blue Light-Emitting Devices,” United States Patent, US 6685852 B2 (2004).
  37. [10] Duclos et al., “Phosphor Coating with Self-adjusting Distance from LED Chip,” United States Patent,US 6635363 B1 (2003).
  38. [13] 劉如熹,白光發光二極體用螢光粉最新發展,LED固態照明研討會論文集 (2008).
  39. [14] 劉如熹,王健源,白光發光二極體製作技術 (全華科技圖書公司, 2005)。
  40. [18] 大田 登,基礎色彩再現工程 (全華科技圖書公司, 2006)。
  41. [29] M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” Journal of Histochemistry and Cytochemistry 27, 250-263 (1979).
  42. [33] D. L. MacAdam, Spectrophotometry in Color Measurement, (Springer-Verlag, 1981), pp. 36-45.
  43. [39] Cree EZ700, http://www.cree.com/products/pdf/CPR3DF.pdf
Times Cited
  1. 汪楷倫(2013)。應用螢光粉頻譜模擬LED亮度之研究。元智大學光電工程學系學位論文。2013。1-52。 
  2. 陳金錫(2016)。傳統照明企業的商業模式轉型之研究: 以”虹瑞斯”品牌為例。臺灣大學臺大_復旦EMBA境外專班學位論文。2016。1-84。 
  3. 鄭又瑄(2011)。螢光粉參數對於白光LED封裝效率之研究。中央大學光電科學研究所學位論文。2011。1-86。
  4. 洪于舒(2011)。從傳統照明跨足LED照明之策略佈局-以OSRAM公司為例。政治大學智慧財產研究所學位論文。2011。1-97。
  5. 楊上輝(2011)。雙層模造之遠離型螢光粉封裝研究。虎尾科技大學光電與材料科技研究所學位論文。2011。1-66。
  6. 劉瑋瑋(2011)。白光LED之螢光粉熱衰探討。中央大學光電科學研究所學位論文。2011。1-101。
  7. 李惇儒(2011)。白光LED之封裝效率之研究。中央大學光電科學研究所學位論文。2011。1-96。
  8. 邱志煜(2012)。白光 LED 空間色偏分佈之研究。中央大學光電科學研究所學位論文。2012。1-101。
  9. 彭逸寧(2012)。雙色分層螢光粉光學模型之建立與分析。中央大學光電科學研究所學位論文。2012。1-131。
  10. 楊雅婷(2013)。PET基材塗佈遠離螢光粉封裝結構應用研究。虎尾科技大學光電與材料科技研究所學位論文。2013。1-48。
  11. 張簡千琳(2013)。新型LED封裝結構與技術於光學特性改善之研究。清華大學動力機械工程學系學位論文。2013。1-155。
  12. 丁姿妍(2014)。高濃度YAG螢光粉光學模型之建立與分析。中央大學照明與顯示科技研究所學位論文。2014。1-119。
  13. 黃瑞琳(2014)。多激發光波長與溫度效應之螢光粉光學模型之研究。中央大學光電科學與工程學系學位論文。2014。1-95。
  14. 徐健紘(2014)。YAG 螢光粉摻雜散射粒子之光學模型。中央大學光電科學與工程學系學位論文。2014。1-95。
  15. 楊上賦(2015)。白光 LED 老化致藍光漏出與其抑制之研究。中央大學光電科學與工程學系學位論文。2015。1-84。
  16. 張育譽(2015)。雙螢光粉光學模型之研究及其演色性之評估。中央大學光電科學與工程學系學位論文。2015。1-144。