透過您的圖書館登入
IP:3.135.219.166
  • 學位論文

環氧樹脂/聚有機矽氧烷奈米複合材料之合成與性質研究

Synthesis and Properties of Epoxy/Polyorganosiloxane Nanocomposites

指導教授 : 馬振基
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究旨在利用胺基矽氧烷單體(3-Aminopropyltrimethoxysilane, APTMS)、環氧基矽氧烷單體(γ-Glycidoxypropyltrimethoxysilane, GPTMS)與芳香族烴基矽氧烷單體(1, 4-Bis(trimethoxysilylethyl) Benzene, BTB)在路易士酸複合物─三氟化硼單乙胺(Boron trifluoride monoethylamine, BF3MEA)的催化下,藉溶膠凝膠反應分別合成出含胺基與含環氧基之聚有機矽氧烷交聯劑,進一步分別在含胺基聚有機矽氧烷交聯劑或含環氧基之聚有機矽氧烷交聯劑中加入環氧樹脂與交聯劑(4,4’-Methylenedianiline, DDM)進行硬化反應,經加熱硬化後得到新穎環氧樹脂/聚有機矽氧烷混成複合材料,利用奈米材料中含聚有機矽氧烷的結構,期望能提升複合材料之熱穩定性。 本研究先以FT-IR監測反應性;在尚未硬化前以DSC進行硬化反應動力學研究;以ATR-FTIR與Solid-State 29Si NMR鑑定產物鍵結結構;以XRD、SEM、Si Mapping與TEM來進行結構型態學方面的研究;以DSC、TGA測試分析材料之熱性質,進而進行IPDT值測試與熱裂解動力學研究;以UV-Vis進行透光性測試;以DMA來測試材料在高溫下的機械性質。 經由FT-IR監測反應性的測試分析,在EP/APTMS/BTB系統中發現BF3MEA可有效催化水解縮合反應與開環反應,但無法催化EP/GPTMS/BTB系統進行明顯的水解縮合反應與開環反應。在反應動力學方面,EP/APTMS/BTB系統之反應活化能隨BTB含量增加而緩緩下降;EP/GPTMS/BTB系統反應活化能隨BTB含量增加而提升。 本研究已成功合成出相容性良好的環氧樹脂/聚有機矽氧烷混成複合材料。EP/APTMS/BTB系統在BTB含量小於10wt%之材料其矽氧鍵結主要為T3結構,在BTB含量大於20wt%出現T1結構;EP/GPTMS/BTB系統則主要為T0與T1結構。矽氧鍵結程度將影響材料的裂解溫度(Td5)、裂解活化能以及高溫下機械性質。 由UV-Vis、XRD與SEM的測試結果可知,在紫外光-可見光波長範圍下穿透度皆良好,材料具有透明性質,且分子鏈的結構型態為非結晶型,並且斷裂面平整無相分離現象。由TEM圖可知,EP/APTMS/BTB 10wt%具有緻密的無機網狀結構;在EP/APTMS/BTB 10wt%中,有T0與T1結構形成鬆散的無機結構,而無緻密的無機網狀結構存在。 在性質測試方面,EP/APTMS/BTB系統之BTB含量在10wt%以下時,材料之熱穩定性優異(Td5由336℃提升至371℃,焦炭產率由27.4提升至30.2%,氮氣環境下的裂解活化能由139 kJ/mol提升至176 kJ/mol,空氣環境下的裂解活化能由172 kJ/mol提升至205 kJ/mol)且動態機械性質佳;EP/GPTMS/BTB系統材料之熱穩定性差異不大且動態機械性質較差。兩系統材料之Tg皆隨BTB含量增加而下降。

並列摘要


In this study, a series of crosslinking agents, amino-polyorganosiloxane and epoxy- polyorganosiloxane were synthesized from 3-Amino- propyltrimethoxysilane (APTMS), γ-Glycidoxypropyl trimethoxy- silane (GPTMS) and 1,4-Bis(trimethoxysilyl) Benzene (BTB) via a sol-gel reaction. Boron trifluoride monoethylamine (BF3MEA) was used as catalyst. Furthermore, the amino-polyorganosilxane or epoxy- polyorganosiloxane was added to DGEBA type epoxy resin and 4, 4’- Methylene- dianiline (DDM) to prepare epoxy/polyorganosiloxane nanocomposites. The nanocomposites were anticipated to exhibit excellent thermal stability. FTIR and solid-state 29Si-NMR were used to investigate the reactivity of sol-gel reaction, curing reaction and the structure of the nanocomposites. XRD, SEM, Si Mapping and TEM were used to study the structure of polymer chains and morphology. DSC, TGA were used to analyze the thermal properties of the nanocomposites and calculate the kinetics of curing and thermal degradation. UV-Vis was used to analyze the transparency. DMA was used to analyze the dynamic mechanical properties. BF3MEA was proved to be an effective catalyst for sol-gel reaction of APTMS, but it can not promote the sol-gel reaction of GPTMS. The activation energy of curing reaction, Ea, slightly decreased from 56 to 54 kJ/mol by Ozawa’s method, and from 52 to 50 kJ/mol by Kissinger’s method with the increasing BTB contents in EP/APTMS/BTB system. The activation energy of curing reaction, Ea, significantly increased from 56 to 63 kJ/mol by Ozawa’s method and from 51 to 58 kJ/mol by Kissinger’s method with the increasing BTB contents in EP/GPTMS/BTB system. The EP/APTMS/BTB system possesses more T3 structures when the BTB content was lower than 10wt%. T1 structures appeared when BTB content was higher than 20wt%. The EP/GPTMS/BTB system possesses more T0 and T1 structures. The T structure of inorganic network will affect the Td5, Ea and dynamic mechanical properties of composite. From UV-Vis, XRD and SEM investigation, all nanocomposites were amorphous, possess excellent optical transparency and no phase separation. From TEM microphotographs, EP/APTMS/BTB (10wt%) possesses dense inorganic structure (particle size around 5-15nm), and EP/GPTMS/BTB (10wt%) possesses loose inorganic structure. EP/APTMS/BTB system with BTB content lower than 10wt% showed good dynamic mechanical property and thermal stability (Td5 increased from 336℃ to 371℃, char yield increased from 27.4 to 30.2%, Ea of thermal degradation in N2 increased from 139 to 176 kJ/mol, Ea of thermal degradation in air increased from 172 to 205 kJ/mol). EP/GPTMS/BTB system exhibited similar thermal stability and lower mechanical property. The Tgs of all nanocomposites decreased with the increasing BTB content.

並列關鍵字

Epoxy Polyorganosiloxane Nanocomposite Sol-gel

參考文獻


54. 張家維, “新型高分子/氧化矽混成材料之製備及其光學薄膜之應用”, 國立台灣大學碩士論文 (2004)
65. 劉芳怡, “ 新穎含磷梯狀聚倍半矽氧烷化合物環氧樹脂奈米複合材料之合成與性質研究”, 國立清華大學化學工程學系碩士論文 (2006)
58. C. L. Chiang, F. Y. Wang, C. C. M. Ma, H. R. Chang, Polym. Degrad. Stab., 77, 273 (2002)
59. C. L. Chiang, C. C. M. Ma, F. Y. Wang, H. C. Kuan, European Polymer Journal, 39, 825 (2003)
63. Y. L. Liu, G. P. Chang, C. S. Wu, Y. S. Chiu, Journal of polymer science: Part A, 43, 5787 (2005)

被引用紀錄


連思瑀(2017)。雙硬化型環氧甲基丙烯酸酯複合材料之製備與抗腐蝕性質測試〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2017.00266
楊士億(2009)。奈米無機物包覆碳奈米管/環氧樹脂複合材料之製備及其性質之研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-1111200916004353
林瑋寧(2010)。碳奈米管/奈米石墨烯片/環氧樹脂複合材料之製備及其性質之研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-0211201015591242

延伸閱讀