透過您的圖書館登入
IP:3.137.218.215
  • 學位論文

多壁奈米碳管複合材料應用於PET抗靜電劑之物性研究

The application of MWCNT-contained composite for anti-static agent

指導教授 : 張淑美

摘要


本研究目標為製備一含奈米碳管且具透光度之可塗佈於PET薄膜抗靜電劑,在過去可塗佈上PET之抗靜電劑多為有機溶劑型,而近年來環保意識抬頭,將有機溶劑以水溶液取代將成為主流,且過去常使用的聚苯胺型及離子型高分子,雖都可具備抗靜電效果,但聚苯胺經過UV光照射會讓雙鍵斷裂使抗靜電效果下降,而離子型高分子其抗靜電效果受隨環境濕度影響,此篇論文採用奈米碳管複合材應用於抗靜電薄膜上即可避免上述之缺點,但如何製備可塗佈於PET基材的水性抗靜電劑之關鍵在於奈米碳管之分散性與奈米碳管抗靜電液與PET基材之浸潤程度,本實驗針對這兩點進行研究。 本實驗使用十二烷基苯磺酸(DBS)、聚氧乙烯壬酚醚(IGEPAL CO-720)及聚山梨醇酯80(Tween80)三種界面活性劑作為奈米碳管於水溶液分散劑,並探討此三種非離子型界面活性劑對奈米碳管分散性的影響,分散結果以粒徑分析儀及穿透式電子顯微鏡(TEM)分析鑑定,得知含有苯環結構之分散劑對於奈米碳管的分散性較佳。將分散良好之奈米碳管水溶液與水性樹酯摻混後以線棒塗佈法將其塗佈於電暈處理後之PET基材,並送至烘箱以60℃烘乾,其薄膜物性由四點探針量測儀、紫外光/可見光光譜儀(UV-vis)及掃描式電子顯微鏡(SEM)鑑定。結果顯示,表面阻抗值隨多壁奈米碳管的添加量增加而下降,當多壁奈米碳管的添加量為0.6 wt%時,表面阻抗值可降至107Ω⁄⧠,且膜片尚具有不錯的透光性。

關鍵字

奈米碳管 分散 抗靜電

並列摘要


The purpose of this study is to prepare aqueous anti-static coating agent for a PET plate to form a film with high transparency and low surface resistance. In the past time, the anti-static agent were almost organic solvent type. When the awareness of environment rises, people prefer the water-based products to solvent type products. In this study, the key points are the dispersity of MWCNT and the ability of MWCNT-contained agent to wet the PET substrate. In this experiment, water-based resin and three nonionic surfactants, DBS, IGEPAL CO-720 and Tween80 were used to disperse MWCNT in water. The nano composites were characterized by Particle Size Distribution Analyzer and Transmission Electron Microscopy. The results show that surfactants containing aromatic substituent could enhance the dispersity of MWCNT. The MWCNT/resin-coated PET films were characterized by Four-point Probe, UV-vis Spectrophotometer, Scanning Electron Microscopy and Thermogravimetric Analyzer. The suface resistance is reduced into 107Ω⁄⧠ as the percentage of MWCNT increase to 0.6wt%.

並列關鍵字

MWCNT Dispersant Antistatic

參考文獻


[2] 吳瑋玲,奈米碳管在鄰苯二甲酸酯類溶液與腐植溶液中分散與絮凝,碩士論文,國立中央大學環境工程研究所,桃園,2012。
[4] Journet, C.; Maser, W. K.; Bernier, P.; Loiseau, A.; de la Chapelle, M. L.; Lefrant, S.; Deniard, P.; Lee, R.; Fischer, J. E., Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 1997, 388 (6644), 756-758
[5] Chae, H. G.; Kumar, S., Rigid-rod polymeric fibers. Journal of Applied Polymer Science 2006, 100 (1), 791-802.
[6] Bellucci, S., Carbon nanotubes: physics and applications. physica status solidi (c) 2005, 2 (1), 34-47.
[7] Meo, M.; Rossi, M., Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Composites Science and Technology 2006, 66 (11–12), 1597-1605.

延伸閱讀