透過您的圖書館登入
IP:18.117.196.217
  • 期刊

生物無機工程:利用雙亞硝基鐵錯合物開發可傳遞一氧化氮的生醫材料並作為組織工程之應用

Bioinorganic Engineering: Incorporation of Dinitrosyl Iron Complexes into NO-delivery Biomaterial for Tissue Engineering

摘要


鐵是人體中最豐富的過渡金屬。在許多酵素以及蛋白質中,含鐵活性中心參與了一氧化氮的生物合成、傳遞、訊息傳遞以及轉換。在此篇文獻中,我們首先回顧了負責合成一氧化氮的一氧化氮合成酶,感測一氧化氮的可溶性鳥苷酸環化酶,以及生物體如何利用[Fe(NO)_2]活性中心,用以達成傳遞一氧化氮。受到天然[Fe(NO)_2]活性中心的啟發,仿生雙亞硝基鐵錯合物用以傳遞一氧化氮的反應性將進一步被討論。仿生雙亞硝基鐵錯合物,進一步在動物模型中被驗證具有癌症治療以及促進糖尿病情境中傷口癒合的效果。除此之外,利用仿生雙亞硝基鐵錯合物傳遞一氧化氮的活性,俄羅斯團隊也發展出Oxacom®,並完成了針對降血壓的臨床一期以及二期的試驗。有鑑於雙亞硝基鐵錯合物傳遞一氧化氮的反應性,以及一氧化氮抗菌、抗發炎、細胞保護及細胞增生的生物活性,在生物無機工程的概念下,將[Fe(NO)_2]活性中心,與各式生醫材料結合,將具有潛力進一步開發作為組織工程方面的應用。

並列摘要


Fe is the most abundant transition metal ion in humans. Through its assembly in the form of heme, [Fe-S], and [Fe(NO)_2] cofactors within a variety of enzymes and proteins, Fe participates in the biosynthesis, translocation, signal transduction, and transformation of nitric oxide. In this report, we first review the utilization of Fe-containing enzymes and proteins for biosynthesis and detection of NO. Moreover, translocation of endogenous NO by natural [Fe(NO)_2] motif and translational development of synthetic dinitrosyl iron complexes (DNICs) for biomedical applications are then discussed. A mechanistic study of NO-release and NO-transfer reactivity of structure-characterized DNICs promoted the discovery of cell-penetrating and in vivo NO-delivery reactivity for treatment of cancer and wound healing in diabetes. Beyond activation of sGC and vasodilation, phase I/II clinical trials of glutathionebound DNICs (Oxacom®) against hypertension encourage bioinorganic engineering of DNICs into scaffolds for tissue regeneration and repair relying on anti-bacterial, anti-inflammation, cytoprotective, and proliferative effects of NO.

延伸閱讀