Title

納豆菌液態培養生產枯草桿菌素 NAT 最適條件之探討及其應用於乳酸球菌表現

Translated Titles

Optimal production for subtilisin NAT of Bacillus subtilis by submerged culture and expressed in Lactococcus lactis

DOI

10.6342/NTU.2008.00767

Authors

古庭維

Key Words

納豆菌 ; 枯草桿菌素 NAT ; 反應曲面法 ; 乳酸球菌 ; 乳酸鏈球菌肽調控表現系統 ; Bacillus subtilis natto ; subtilisin NAT ; response surface methodology (RSM) ; Lactococcus lactis NZ9000 ; nisin-controlled expression system (NICE system)

PublicationName

臺灣大學微生物與生化學研究所學位論文

Volume or Term/Year and Month of Publication

2008年

Academic Degree Category

碩士

Advisor

潘子明

Content Language

繁體中文

Chinese Abstract

由市面上購得之納豆商品中分離出 34 株納豆菌,並以人工血栓平板篩選出菌株 12-1-2 具有最大血纖維分解活性,利用液態培養方式探討枯草桿菌素 NAT (subtilisin NAT,或稱為 nattokinase,納豆激酶)最適生產條件。本研究並以反應曲面法(response surface methodology, RSM),分別針對不同比例之接種量、葡萄糖與大豆粕添加量進行三因子三階次探討;在前置研究結果顯示,接種量、葡萄糖及大豆粕添加量之中央點分別為 5.0%、1.0% 及 3.0% 之濃度。再由反應曲面圖可預測,當添加 2.93% 之大豆粕、1.75% 之葡萄糖及以 4.00% 之濃度接種,將可獲得最大之酵素活性 13.78 SU/mL。以此最適化條件實際進行培養,測得納豆激酶之最大活性為 13.69 SU/mL,為預測值之 99.3%。遺傳工程操作部份,自納豆菌之染色體 DNA 中選殖表現 subtilisin NAT 之基因 aprN 並設計 3 組不同之引子對,以聚合酶鏈反應(polymerase chain reaction, PCR)增幅不同型式之 aprN,分別為 pro-NK、mature NK 以及 NK-histag,再分別與大腸桿菌表現載體接合後再轉形進入大腸桿菌 E. coli JM109 中。經由核酸定序確認所選殖之 aprN 基因序列正確無誤,得到之質體分別為 pETPNK、pETNK 與 pETNKH。所得到之 pro-NK 及 mature NK 序列進一步接合至大腸桿菌�乳酸菌穿梭載體 (shuttle vector) 中,分別為 pNZPNK 以及 pNZNK,以 NICE 系統(nisin-controlled expression system)於乳酸球菌 Lactococcus lactis NZ9000 中表現 subtilisin NAT。建構完成之 pETNKH 依電轉形方式送入 E. coli BL21 (DE3),並進行誘導、純化、濃縮以及動物之免疫注射,以製備 NK 之多株抗體,作為乳酸菌表現系統中 subtilisin NAT 表現情形偵測之用。製備完成之抗體,以 NK-histag 測試其靈敏度,結果能以西方墨點法偵測,顯示 anti-NK 抗體製備成功。pNZPNK 以及 pNZNK 同樣以電轉形送入 L. lactis NZ9000 中,以不同濃度之 nisin 誘導,結果發現 nisin 濃度愈高時,菌體之生長愈受到抑制,顯示異源基因在乳酸菌中受 nisin 調控而表現,與 SDS-PAGE 及西方墨點法之結果符合;而帶有 pro-NK 載體之菌株生長較帶有 mature NK 者更加受到抑制,推測原因是 pro-NK 能發揮分子內 chaperone 之功能使蛋白質正確摺疊而發揮酵素活性,使得菌體本身受到蛋白酶傷害。然而胞外及胞內之酵素活性皆未能偵測,推測是由於表現系統缺乏將目標蛋白外泌之訊息胜肽(signal peptide),造成納豆激酶表現後累積在菌體內無法穩定存在,同時影響菌體生長進而減低生產,使得其活性低於偵測極限。未來在乳酸菌表現納豆激酶之研究方向,可朝探討不同啟動子及訊息胜肽等表現元件之修改來進行。

English Abstract

Thirty-four Bacillus subtilis natto strains were isolated from commercial natto, and strain 12-1-2 showed the strongest fibrinolytic activity in the fibrin plate assay. We further studied the optimal production condition for subtilisin NAT of Bacillus subtilis natto 12-1-2 by submerged cultivation and three variables/three levels response surface methodology (RSM) using various inoculum density, glucose concentration and defatted soybean concentration as three variables. The pre-tset showed the central points were 5.0% inoculum density, 1.0% glucose and 3.0% defatted soybean. According to the response surfaces, while culturing by 2.93% defatted soybean, 1.75% glucose and 4.00% inoculum density, we would obtain an activity of 13.78 SU/mL. Processing the experiment with this optimal condition, the activity reached 13.69 SU/mL, which is equal to 99.3% of the predicted value. For genentic engineering, the gene encoding subtilisin NAT with distinct lengths (pro-NK, mature NK and NK-histag) were cloned by polymerase chain reaction (PCR) with various primer pairs, and ligased to Escherichia coli plasmid pET29a. Confirming by DNA sequencing, three plasmids, pETPNK, pETNK and pETNKH, with accurate sequences were constructed succesfully. The pro-NK and mature NK sequences were further ligased to E. coli/LAB shuttle vector pNZ8020 to construct pNZPNK and pNZNK, which express in Lactococcus lactis NZ9000 by nisin controlled-expression system (NICE system). pETNKH was transformed into E. coli BL21 (DE3), followed by induction, purification, and injection to Wisatr rats, to prepare polyclonal antibody for analysis of subtilisin NAT expression. In antibody sensitivity test, the positive result of Western blotting using NK-histag as standard protein indicated that we induced anti-NK antibody successfully. L. lactis NZ9000 harboring various plasmids were cultured under various concentrations of nisin induction, as a result, the cell growth were inhibited by higher nisin concentration. Furthermore, transformants harboring pNZPNK was inhibited more than harboring pNZNK. It was considered that pro-NK possessed its activity after nisin induction and thus damaged cells. These results, correlated with SDS-PAGE and Western blotting, indicated that the heterologous protein was expressed controllably by nisin induction. The function of intermolecular chaperone of pro-NK was supposed to facilitate subtilisin NAT to process correctly in LAB. However, we cannot detect its activity by the fibrin plate assay due to low stability of subtilisin NAT in LAB cells which caused the activity to be lower than detection limit.

Topic Category 醫藥衛生 > 基礎醫學
生命科學院 > 微生物與生化學研究所
Reference
  1. 石馥維。2005。血纖維分解酶 subtilisin NAT 之發酵生產研究。國立台灣大學微生物與生化學研究所碩士論文。
    連結:
  2. 行政院農業委員會。2005。農業生物技術領域策略規劃報告書。
    連結:
  3. 邱秋霞。2006。Lactobacillus plantarum NTU 102 生理特性及其在保健食品與水產養殖應用之探討。國立台灣大學微生物與生化學研究所博士論文。
    連結:
  4. 林峰毅。2005。以大腸桿菌異源表現納豆激酶。大同大學生物工程研究所碩士論文。
    連結:
  5. 趙婉如。2002。探討大蒜精油對血小板凝集及凝血作用之影響。靜宜大學食品營養學系碩士論文。
    連結:
  6. Agostoni, C., Axelsson, I., Goulet, O., Koletzko, B., Michaelsen, K.F., Puntis, J.W., Rigo, J., Shamir, R., Szajewska, H. and Turck, D. 2004. Prebiotic oligosaccharides in dietetic products for infants: A commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 39: 465-473.
    連結:
  7. Arnau J., Hjerl-Hansen, E. and Israelsen, H. 1997. Heterologous gene expression of bovine plasmin in Lactococcus lactis. Appl. Microbiol. Biotechnol. 48: 331–338.
    連結:
  8. Ash, C., Farrow, J.A., Wallbanks, S. and Collins, M.D. 1991. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small subunit ribosomal RNA sequences. Lett. Appl. Microbiol. 13: 202-206.
    連結:
  9. Ashiuchi, M., Kamei, T. and Misono, H. 2003. Poly-γ-glutamate synthetase of Bacillus subtilis. J. Molec. Catal. B: Enzymatic 23: 101-106.
    連結:
  10. Astrup, T. 1956. The biological significance of fibrinolysis. Lancet 271: 565-568.
    連結:
  11. Astrup, T. and Müllertz, S. 1952. The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys. 40: 346-351.
    連結:
  12. Bajaj A.P. and Castellino, F.J. 1977. Activation of human plasminogen by equimolar levels of streptokinase. J. Biol. Chem. 252: 492-498.
    連結:
  13. Benerjee, A., Chisti, Y. and Benerjee, U.C. 2004. Streptokinase - a clinically useful thrombolytic agent. Biotechonl. Adv. 22: 287-307.
    連結:
  14. Binnie, C., Jenish, D., Cossar, D., Szabo, A., Trudeau, D., Krygsman, P., Malek, L.T. and Stewart, D.I. 1997. Expression and characterization of soluble human erythropoietin receptor made in Streptomyces lividans 66. Prot. Expr. Purif. 11: 271-278.
    連結:
  15. Box, G.E.P. and Behnken, D.W. 1960. Some new three level designs for the study of quantitative variable. Technometrics 2: 455-463.
    連結:
  16. Chen, P.T., Chiang, C.J. and Chao, Y.P. 2007. Medium optimization for the production of recombinant nattokinase by Bacillus subtilis using response surface methodology. Biotechnol. Prog. 23: 1327-1332.
    連結:
  17. Crozo, G. and Gilliland S.E. 1999. Measurement of bile salt hydrolase activity from Lactobacillus acidophilus based on disappearance of conjugated bile salts. J. Dairy Sci. 82: 466-471.
    連結:
  18. Dambekodi, P.C. and Gilliland S.E. 1998. Incorporation of cholesterol into the cellular membrane of Bifidobacterium longum. J. Dairy Sci. 81: 1818-1824.
    連結:
  19. Denter, J. and Bisping, B. 1994. Formation of B-vitamins by bacteria during the soaking process of soybeans for temp fermentation. Int. J. Food Microbiol. 22: 23-31.
    連結:
  20. Friberger, P., Knos, M., Gustavsson, S., Aurell, L. and Claeson, G. 1978. Methods for determination of plasmin, antiplasmin and plasminogen by means of substrate S-2251. Haemost. 7: 138-145.
    連結:
  21. Fujita, M., Hong, K., Ito, Y., Misawa, S., Takeuchi, N., Kariya, K. and Nishimuro, S. 1995. Transport of nattokinase across the rat intestinal tract. Biol. Pharm. Bull. 18, 1194-1196.
    連結:
  22. Fujita, M., Nomura, K., Hong, K., Ito, Y., Asada, A. and Nishimuro, S. 1993. Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochem. Biophys. Res. Commun. 197, 1340-1347.
    連結:
  23. Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66: 365–378.
    連結:
  24. Gilliland, S.E. and Walker, D.K. 1990. Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. J. Dairy Sci. 73: 905–911.
    連結:
  25. Goldin, B.R. 1998. Health benefits of probiotics. Br. J. Nutr. 80: S203-S207.
    連結:
  26. Grunewald, G.L., Monn, J.A., Rafferty, M.F., Borchardt, R.T. and Krass, P. 1982. Probes of the active site of norepinephrine N-methyltransferase: effect of hydrophobic and hydrophilic interactions on side-chain binding of amphetamine and alpha-methylbenzylamine. J. Med. Chem. 25: 1248-1250.
    連結:
  27. Hoffmeister, H.M., Szabo, S., Helber, U. and Seipel, L. 2001. The thrombolytic paradox. Thromb. Res. 103: S51-S55.
    連結:
  28. Holzapfel, W.H., Haberer, P., Geisen, R., Bjorkroth, J. and Schillinger, U. 1997. Efficient secretion of the model antigen M6-gp41E in Lactobacillus plantarum NCIMB 8826. Microbiol. 143: 85-101.
    連結:
  29. Holzapfel, W.H. and Schillinger, U. 2002. Introduction to pre- and probiotics. Food Res. Int. 35: 109-116.
    連結:
  30. Hose, H. and Sozzi, T. 1991. Probiotics, fact or fiction. J. Chem. Technol. Biotechnol. 51: 540-544.
    連結:
  31. Hosoi, T., Ametani, A., Kiuchi, K. and Kaminogawa, S. 1998. Changes in fecal microflora induced by incubation of mice with Bacillus subtilis (natto) spores are dependent upon diatary components. Can. J. Microbiol. 45: 59-66.
    連結:
  32. Hsu, H.C., Hsu, C.I., Lin, R.H., Kao, C.L. and Lin, J.Y. 1997. Fip-vvo, a new fungal immunomodulatory protein isolated from Volvariella volvacea. Biochem. J. 323: 557-565
    連結:
  33. Inatsu, Y., Nakamura, N., Yuriko, Y., Fushimi, T., Watanasiritum, L. and Kawamoto, S. 2006. Characterization of Bacillus subtilis strains in Thua nao, a traditional fermented soybean food in northern Thailand. Lett. Appl. Microbiol. 43: 237-242.
    連結:
  34. Iwai, K., Nakaya, N., Kawasaki, Y. and Matsue, H. 2002. Inhibitory effect of natto, a kind of fermented soybeans on LDL oxidation in vitro. J. Agric. Food Chem. 50: 3592-3596.
    連結:
  35. Kamata, H., Yamagata, T., Nakamura, T., Nakajima, T., Oda, K., Murao, S. and Ichishima, E. 1989. Characterization of the complex between α2-macroglobulin and a serine proteinase from Bacillus natto. Agric. Biol. Chem. 53: 2695-2702.
    連結:
  36. Kim, W., Choi, K., Kim, Y., Park, H., Choi J., Lee, Y., Oh, H., Kwon, I. and Lee, S. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. Strain CK11-4 screened from Chungkoo-Jang. Appl. Env. Microbiol. 62: 2482-2488.
    連結:
  37. Klaenhammer, T.R. 1995. Genetics of intestinal Lactobacilli. Int. Dairy J. 5: 1019-1058.
    連結:
  38. Klaenhammer, T.R. and Kullen, M.J. 1999. Selection and design of probiotics. Int. J. Food Microbiol. 50: 45-57.
    連結:
  39. Lee, Y.K., and Salminen, S. 1995. The coming of age of probiotics. Trends Food Sci. Technol. 6: 241-245.
    連結:
  40. Le Loir, Y., Azevedo, V., Oliverira, S.C., Freitas, D.A., Miyoshi, A., Bermudez-Humaran, L.G., Nouaille, S., Ribeiro, L.A., Leclercq, S., Gabriel, J.E., Guimaraes, V.D., Oliveira, M.N., Charlier, C., Gautier, M. and Langella, P. 2005. Protein secretion in Lactococcus lactis: an efficient way to increase the over all heterologous protein production. Microb. Cell Fact. 4: 2.
    連結:
  41. Li, X., Wang, X., Xiong, S., Zhang, J., Cai, L. and Yang, Y. 2007. Expression and purification of recombinant nattokinase in Spodoptera frugiperda cells. Biotechnol. Lett. 29: 1459-1464.
    連結:
  42. Liang, X., Jia, S., Sun, Y., Chen, M., Chen, X., Zhong, J. and Huan, L. 2007. Secretory expression of nattokinase from Bacillus subtilis YF38 in Escherichia coli. Mol. Biotechnol. 37: 187-194.
    連結:
  43. Lilly, D.M. and Stillwell, R.H. 1965. Probiotics: growth promoting factors produced by microorganisms. Science 147: 747–748.
    連結:
  44. Majamaa, H., Isolauri, E., Saxelin, M. and Vesikari, T. 1995. Lactic acid bacteria in the treatment of acuterotavirus gastroenteritis. J. Pediatr. Gastroenterol. Nutr. 20: 333-338.
    連結:
  45. Mierau, I., Olieman, K., Mond, J. and Smid, E.J. 2005. Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications. Microb. Cell Fact. 4: 16-27.
    連結:
  46. Milner, M. and Makise, K. 2002. Natto and its active ingredient nattokinase-a potent and safe thrombolytic agent. Altern. Complement Ther. 8: 157–194.
    連結:
  47. Naidu, S., Bidlack, W.R. and Clemens, R.A. 1999. Probiotic spectra of lactic acid bacteria (LAB). Crit. Rev. Food Sci. Nutr. 38: 13-126.
    連結:
  48. Nakajima, N., Ishihara, K., Sugimoto, M., Sumi, H., Mikuni, K. and Hamada, H. 1996. Chemical modification of earthworm fibrinolytic enzyme with human serum albumin fragment and characterization of the protease as a therapeutic enzyme. Biosci. Biotechnol. Biochem. 40: 293-300.
    連結:
  49. Nakamura, T., Yamagata, Y. and Ichishima, E. 1992. Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto). Biosci. Biotechnol. Biochem. 56, 1869-1871.
    連結:
  50. Nouaille, S., Ribeiro, L.A., Miyoshi, A., Pontes, D., Le Loir, Y., Oliveira, S.C., Langella, P. and Azevedo, V. 2003. Heterologous protein production and delivery systems for Lactococcus lactis. Genet. Mol. Res. 2:102-111.
    連結:
  51. Omura, K., Hitosugi, M., Zhu, X., Ikeda, M., Maeda, H. and Tokudome, S. 2005. A newly derived protein from Bacillus subtilis natto with both antithrombotic and fibrinolytic effects. J. Pharmacol Sci. 99: 247–251.
    連結:
  52. Peng, Y., Huang, Q., Zhang, R.H. and Zhang, Y.Z. 2003. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 sceened form douche, a traditional Chinese soybean food. Comparative Biochem. Physiol. Part B 134: 34-52.
    連結:
  53. Samanya, M. and Yamaguchi, K.E. 2002. Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 133: 95-104.
    連結:
  54. Sanders, J.W., Venema, G., Kok, J. and Leenhouts, K.K. 1998. Identification of a sodium chloride-regulated promoter in Lactococcus lactis by single-copy chromosomal fusion with a reporter gene. Mol. Gen. Genet. 257: 681-685.
    連結:
  55. Schallmey, M., Singh, A. and Ward, O.P. 2004. Development in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17.
    連結:
  56. Schiffrin, E.J., Brassart, D., Servin, A. L., Rochat, F. and Donnet-Hughes, A. 1997. Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection. Am. J. Clin. Nutr. 66: 515S-520S.
    連結:
  57. Shortt, C. 1999. The probiotic century: historical and current perspectives. Trends Food Sci. Technol. 10: 411-417.
    連結:
  58. Simon, D. and Chopin, A. 1988. Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochim. 70: 559-566.
    連結:
  59. Srivastava, P. and Deb, J.K. 2005. Gene expression systems in Corynebacteria. Prot. Expr. Purif. 40: 221-229.
    連結:
  60. Studier, F.W. and Moffatt, B.A. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189: 113-120.
    連結:
  61. Studier, F.W., Rosenberg, A.H., Dunn, J.J. and Dubendorf, J.W. 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Meth. Enzymol. 185: 60-89.
    連結:
  62. Subbian, E., Yabuta, Y. and Shinde, U.P. 2005. Folding pathway mediated by an intramolecular chaperone: intrinsically unstructured propeptide modulated stochastic activation of subtilisin. J. Mol. Biol. 347: 367-383.
    連結:
  63. Sumi, H., Hamada, H., Nakanishi, K. and Hiratani, H. 1990. Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase. Acta. Haematol. 84: 139-143.
    連結:
  64. Sumi, H., Hamada, H., Tsushima, H., Mihara, H. and Muraki, H. 1987. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese natto; a typical and popular soybean food in the Japanese diet. Experientia 43: 1110-1111.
    連結:
  65. Sumi, H., Nakajima, N. and Yatagai, C. 1995. A unique strong fibrinolytic enzyme (katsuwokinase) in shipjack “Shiokara”, a Japanese traditional fermented food. Compound Biochem. Physiol. 112B: 543-547.
    連結:
  66. Suzuki, Y., Kondo, K., Ichise, H., Tsukamoto, Y., Urano, T. and Umemura, K. 2003. Dietary supplementation with fermented soybeans suppresses intimal thickening. Nutr. 19: 261-264.
    連結:
  67. Tannock, G.W. 1998. Studies of the intestinal microflora: a prerequisite for the development of probiotics. Int. Dairy J. 8: 527-533.
    連結:
  68. Urano, T., Ihara, H., Umemura, K., Suzuki, Y., Oike, M., Akita, S., Tsukamoto, Y., Suzuki, I. and Takada, A. 2001. The profibrinolytic enzyme subtilisin NAT purified from Bacillus subtilis cleaves and inactivates plasminogen activator inhibitor type I. J. Biol. Chem. 276: 24690-24696.
    連結:
  69. van de Guchte, M., van der Wal, F.J., Kok, J. and Venema, G. 1992. Lysozyme expression in Lactococcus lactis. Appl. Microbiol. Biotechnol. 37: 216-224.
    連結:
  70. van Rooijen, R.J., Gasson, M.J. and de Vos, W.M. 1992. Characterization of the Lactococcus lactis lactose operon promoter: contribution of flanking sequences and lacR repressor to promoter activity. J. Bacteriol. 174: 2273-2280.
    連結:
  71. Verschuere, L., Rombaut, G., Sorgeloos, P. and Vertraete, W. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev. 64: 655-671.
    連結:
  72. Wells, J.M., Robinson K., Chamberlain L.M., Schofield K.M. and Le Page, R.W. 1996. Lactic acid bacteria as vaccine delivery vehicles. Antonie Van Leeuwenhoek 70: 317-330.
    連結:
  73. Wells, J.M., Wilson, P.W., Norton, P.M. and Le Page, R.W.F. 1993. A model system for the investigation of heterologous protein secretion pathways in Lactococcus lactis. Appl. Env. Microbiol. 59: 3954-3959.
    連結:
  74. Westers, L., Westers, H. and Quax, W.J. 2004. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim. Biophys. Acta. 1694: 299-310.
    連結:
  75. Wu, S., Feng, C., Zhong, J. and Huan, L. 2007. Roles of s3 site residues of nattokinase on its activity and substrate specificity. J. Biochem. 142: 357-364.
    連結:
  76. Yabuta, Y., Subbian, E., Oiry, C. and Shinde, U. 2003. Folding pathway mediated by an intramolecular chaperone. A functional peptide chaperone designed using sequence databases. J. Bio. Chem. 278: 15246-15251.
    連結:
  77. Yamashita, T., Oda, E., Giddings, J.C. and Yamamoto, J. 2003. The effect of dietary Bacillus natto productive protein on in vivo endogenous thrombolysis. Pathophysiol. Haemost. Thromb. 33:138–143.
    連結:
  78. 李信宜。2006。麩皮添加對市售納豆菌產生納豆激酶活性之影響。大葉大學生物產業科技學系碩士論文。
  79. 李麗鳳。2004。蛋白質表現系統簡介。化工資訊與商情。16: 34-41。
  80. 林富美。2001。由本土分離乳酸菌株之性質探討與應用。國立台灣大學農業化學研究所碩士論文。
  81. 林麗菁。2003。納豆菌之液態培養及其生產納豆激酶之探討。國立屏東科技大學食品科學系碩士論文。
  82. 許元勳。2005。納豆菌發酵製品介紹及國內研發現況。農業生技產業季刊。3: 45-52。
  83. 郭本?琚C2004。益生菌。化學工業出版社,北京,中國。
  84. 廖啟成。1998。乳酸菌之分類及應用。食品工業。30: 1-10。
  85. 廖曉玲。2002。新世紀醫學──納豆˙天然的藥用食品。安立出版社,台北,台灣。
  86. 蔡英傑。1998。乳酸菌應用綜論。生物產業。9: 258-264。
  87. 蘇遠志。2003。納豆菌代謝產物的開發與應用。生物產業。14: 117-130。
  88. Bloom, A.L., Fobes, C.D., Thomas, D.P., and Tuddenham, E. 1994. Haemost. and thromb. Edinburgh: Churchill Livingstone, New York, NY, USA.
  89. Eigen, E. and Shockman, G.D. 1963. The folic acid group. In: Kavanagh F, editor. Analytical Microbiology. New York: Academic Press. 432-488.
  90. Gilliland, S.E., Nelson, C.R. and Maxwell, C. 1985. Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Env. Microbiol. 49: 377-381.
  91. Havenaar, R. and Huis in’t Veld, J.H.J. 1992. Probiotics: a general view. In Wood, B.J.B. (Ed.): The Lactic Acid Bacteria, Vol. 1: The Lactic Acid Bacteria in Health and Disease. 151–170. Elsevier Applied Sciences, London, UK.
  92. Hull, R.R., Conway, P.L. and Evans, A.J. 1992. Probiotic food - a new opportunity. Food Aust. 44: 112-113.
  93. King, M.W. 2003. Biochemistry, in: The New Book of Knowledge, Grolier Inc., Danbury, CT, USA.
  94. Mihara, H., Yoneta, T., Sumi, H., Soeda, M. and Maruyama, M. 1989. A possibility of earthworm powder as therapeutic agent for thrombosis. Thromb. Haemost. 62: 545.
  95. Parker, R.B. 1974. Probiotics, the other half of the antibiotic story. Anim. Nutr. Health 29: 4–8.
  96. Pouwels, P.H. and Chaillou, S. 2003. Gene expression in Lactobacilli. p. 143-188. In Wood, B.J.B. & Warner, P.J. Genetics of Lactic Acid Bacteria., Kluwer Academic/Plenum Publishers, New York, NY, USA.
  97. Sanders, J.W., Venema, G.. and Kok, J. 1997. A chloride-inducible gene expression cassette and its use in induced lysis of Lactococcus lactis. Appl. Env. Microbiol. 63: 4877-4882.
  98. Sumi, H., Hamada, H., Mihara, H., Nakanishi, K. and Hiratani, H. 1989. Fibrinolytic effect of the Japanese traditional food “natto” (nattokinase). Throm. Haemost. 62: 549.
  99. Taranto, M.P., Sesma, F., Holdago, A.P.R. and Valdez, G.F. 1997. Bile salts hydrolase plays a key role on cholesterol removal by Lactobacillus casei. Biotechnol. Lett. 19: 845–847.
Times Cited
  1. 李楷謙(2009)。基因改造乳酸菌 Lactococcus lactis NZ9000/pNZPNK 安全性評估。臺灣大學微生物與生化學研究所學位論文。2009。1-97。