透過您的圖書館登入
IP:3.138.125.2
  • 學位論文

含三維結構五苯荑骨架之聚苯胺電極材料製備與作為超級電容器的應用

Fabrication of the Three-dimensional Pentiptycene-incorporated Polyanilines for High Performance Supercapacitor Electrodes

指導教授 : 楊吉水

摘要


超級電容器除了擁有高於電池的功率密度及穩定性,相較於傳統電容器,能量密度大幅提升,因此成為近幾年最有潛力的新興儲能裝置。其中,聚苯胺具有合成簡易、對環境污染較少、成本價格低廉及較高的理論電容儲存量等特性,最常被用來作為電容器電極材料;然而,聚苯胺在連續的充放電過程中,薄膜體積膨脹 / 收縮的改變則破壞本身的結構,使電容量嚴重衰退,進而影響後續的應用。為了克服穩定度不佳的問題,我們預測五苯荑分子H形剛硬結構有助於高分子鏈的嵌入,並以「夾子」形式穩固聚苯胺鏈,使鏈彼此有良好的堆疊排列,形成有效的交聯網絡,進而提升電容量與循環穩定性等電化學表現。為了引入三維立體剛硬結構的五苯荑分子至聚苯胺骨架,我們分別以DP、MA、DA和TA為起始物與苯胺進行共聚合反應,以探討起始物官能基如何影響共聚反應之聚合物DP-p、MA-p、DA-p和TA-p的結構與性質。 結果顯示MA、DA及TA分子有效作為模板並參與聚合反應,由電子顯微鏡觀測其聚合物表面形態為球形堆疊結構,然而DP-p則相似於PANI顆粒團狀結構。於電化學表現上,球形堆疊之TA-p電容儲存量高達410 F / g,千圈穩定度為91 %;DA-p與MA-p電容量分別為330 F / g和250 F / g,穩定度亦提升至87 %左右,皆高於兩者顆粒團狀之DP-p與PANI聚合物,其電容量僅約220 F / g且電容保存率剩70 %左右。此表示五苯荑分子確能發揮「夾子」功用,使聚苯胺鏈間進行有效排列,亦能穩固聚苯胺鏈抑制其在長時間測試中骨架的裂解,進一步提升材料整體的電化學性質。 比較這四種系列的五苯荑對聚苯胺分子鏈在空間上的分佈與互相堆疊的影響,研究形成的聚合物在電化學上的表現,有助於日後超級電容器電極材料的改良,在儲能裝置上達到更有效的利用。

並列摘要


Supercapacitors, used as energy storage devices, have the feature of higher power density and durability than batteries and higher energy density than conventional dielectric capacitors. Polyaniline is one of the most useful conducting polymers as the supercapacitor electrode materials due to its high theoretical specific capacitance. During the charge / discharge processes, however, the PANI-based electrodes have poor long-term stability because of swelling / shrinkage. To improve the stability, we reasoned that the rigid H-shaped pentiptycene scaffold will act as a “clip” for fixing polyaniline chains in plane, which promotes the formation of internal interlocking structure. Therefore, we have prepared a series of pentiptycene derivates, DP, MA, DA and TA to react with aniline to form pentiptycene-incorporated polyanilines, and then explored the relationship between the starting materials and the properties for the polymers. Our results indicate that MA, DA and TA are good materials for the chemical oxidative polymerization. The polymer MA-p, DA-p and TA-p display spherical morphology, but DP-p is similar to the parent polyaniline (PANI), which shows a granular structure. Regarding the electrochemical performance, TA-p shows the best capacitance, 410 F / g, and retains 91 % capacity after 1000 charge-discharge cycles;MA-p and DA-p also indicate higher capacitance, 330 F / g and 250 F / g, respectively, than DP-p and PANI, and show about 87 % capacitance retention during long-term process. The rigid H-shaped pentiptycene effect on the enhanced capacitive performance of polyanilines might stimulate the future modification and application of model polyanilines as the electrode materials of supercapacitors.

參考文獻


1. International Energy Outlook /U.S. Energy Information Administration, Total world energy consumption by energy source. 2016.
2. Sharma, P.; Bhatti, T. S., A Review on Electrochemical Double-layer Capacitors. Energy Convers. Manage. 2010, 51 (12), 2901-2912.
3. Becker, H. E., Low Voltage Electrolytic Capacitor. US Patent 2800616. 1957.
5. González, A.; Goikolea, E.; Barrena, J. A.; Mysyk, R., Review on Supercapacitors: Technologies and Materials. Renew. Sust. Energ. Rev. 2016, 58, 1189-1206.
7. Wang, L. L., X.;Lei, S.;Song, Y. , Graphene-based Polyaniline Nanocomposites: Preparation, Properties and Applications. J. Mater. Chem. A 2014, 2, 4491-4509.

延伸閱讀