透過您的圖書館登入
IP:18.225.72.2
  • 期刊

外交新常態?以主題及網絡建模技術探索中共Twitter外交的戰狼溝通策略

Does a new normal in diplomacy? Exploring the Wolf Warrior Communication Strategy of CCP's Twitter Diplomacy Using Topic and Network Modeling Technology

摘要


本研究通過BERT深度學習、LDA、SNA技術,先後對中共外交官的Twitter推文完成文本分類及主題、網絡建模等任務,從而探索中共Twitter外交的主題論述與溝通策略。研究發現,戰狼溝通策略尚未成為外交工作的常態,現階段仍屬因勢制宜的戰術調用,具有選擇性、針對性及目的性。但凡涉及對美鬥爭,中共多會出於鞏固政權考量,靈活調用謊言、種族滅絕等戰狼溝通策略,主題集中於人權、主權、防疫、治彊等議題。理論意涵方面,中共領導人把更多注意力放在國內挑戰上,Twitter外交呼應喉舌論,服膺黨的利益。就外交脈絡論,戰狼外交會否延續或常態化,主要取決於美國態度。故評估其發展趨勢,須將焦點從習近平領導風格轉向美國因素。本研究亦在方法上,驗證了BERT做為文本探勘工具的適用性。

並列摘要


This program used BERT deep-learning, LDA, and SNA analysis to explore Twitter communication strategies of China diplomats for classified topics modeling. The results indicated that "wolf warrior" diplomacy does not support the primary content strategy. The China government used wolf warrior diplomacy within some specific entities, including international affairs related to the United States, human rights issues, sovereignty, Cov-19 virus control, and Xinjiang-related affairs. Regarding theoretical implications, this study provided two primary findings. First, the research showed that communication strategies on social media such as Twitter were attributed to the main themes of the central China government. Further, the United States' diplomacy attitudes were a critical factor in influencing the use of wolf warrior diplomacy. This program also demonstrated the availability of using the BERT deep learning approach to address text mining research.

參考文獻


方鵬程(2010)。〈美軍戰略性傳播的媒體運用分析:以 2003 年波斯灣戰爭為例〉,《復興崗學報》,97:23-45。doi:10.29857/FHKAJ.201003.0002
曹琬凌(2020)。〈媒介化與跨媒介敘事想像:#MeToo 如何交織故事世界〉,《中華傳播學刊》,38:49-97。doi:10.3966/172635812020120038002
傅文成、王隆綱(2016)。〈應用修正式德菲法評估國軍新媒體議題管理關鍵因素之研究〉,《新聞學研究》,129:33-96。doi:10.30386/MCR.201610_(129).0002
趙建民、許志嘉(2009)。〈中共第四代領導集體的「和諧世界觀」理論與意涵〉,《遠景基金會季刊》,10(1):1-44。doi:10.7063/PQ.200901.0001
Tseng, Y. H. (2020). The feasibility of automated topic analysis: An empirical evaluation of deep learning techniques applied to skew-distributed Chinese text classification. Journal of Educational Media & Library Sciences, 57(1), 121- 144. doi:10.6120/JoEMLS.202003_57(1).0047.RS.CE

延伸閱讀