透過您的圖書館登入
IP:3.141.8.247
  • 期刊
  • OpenAccess

震後緊急救護動員分派系統(MD-EMS)自動化先導研究

Pilot Study on an Automatic System for Post-Quake Mobilization and Deployment of Emergency Medical Service (MD-EMS)

摘要


在大規模震災之後,災害管理單位需要立即提供大量傷患到院前緊急醫療服務;而震災影響評估與應變相關系統,例如:國家地震工程研究中心的臺灣地震損失評估系統(Taiwan Earthquake Loss Estimation System, TELES)以及內政部消防署的「防救災應變管理資訊雲端服務」(Emergency Management Information Cloud, EMIC 2.0),能夠讓災害管理單位在災前及災時,提供整備與應變相關資料,為將先前研究整合前述兩個系統,建構MD-EMS系統未來能夠朝向最佳化、雲端化及視覺化發展,並希望在演算後,讓系統能夠提供網內網路決策支援資訊以及網際網路災害溝通公告資訊;因此,本文自動化方式將由四個主要模組構成:(1)數據蒐集、(2)時空資料分析配適、(3)運算模擬,及(4)輸出分析與可視化;採用山腳斷層引發地震的應用實例,來說明系統的使用情境並展示其改善後新穎特色,包括:簡訊觸發系統啟動、介接各服務平臺更新資料庫、蒐集即時實證資料校正計算、考慮震後資源衝擊影響,以及動態視覺化進行災害溝通等功能。

關鍵字

自動化 震後 大量傷患 緊急救護

並列摘要


In the aftermath of a devastating earthquake, emergency management agencies need to provide adequate Emergency Medical Services for initial treatment and delivery of a large number of injuries. Disaster impact software systems, such as TELES (Taiwan Earthquake Loss Estimation System) and EMIC 2.0 (Emergency Management Information Cloud) developed by National Center for Research on Earthquake Engineering (NCREE) and National Fire Agency (NFA) respectively, enable emergency planners and first responders to provide preparation and response information before and during disasters. In order to integrate the previous research with the aforementioned two systems automatically, so the MD-EMS system can be optimized, clouded, and visualized towards further development. It is also anticipated that after the calculation, the system can provide intranet decision-support information and internet disaster communication announcement. Therefore, in this study, the system consists of four main modules: (1) data collection; (2) temporal/geospatial analysis and fitness (3) simulation (4) output analysis and visualization. This study uses a large-scale application example caused by tectonic fault activity to illustrate the use of the system and demonstrate its improved novel functions including triggering system activation through SMS, interconnecting with various service platforms to update the database, collecting real-time empirical data for correction calculations, considering the impact of post-earthquake resources and dynamic visualization for disaster communication, etc.

參考文獻


邱建凱、鄧子正,2020,〈應用 GIS 於都市邊緣地區急重症緊急救護之風險評估〉,《災害防救科技與管理學刊》,9 卷 1 期:頁 25-41。doi:10.6149/JDM.202003_9(1).0003
曾偉文,2017,〈大量傷患事故緊急救護策略評估—以八仙樂園事故為例〉,《災害防救科技與管理學刊》,6 卷 1 期:頁 49-61。doi:10.6149/JDM.2017.0601.03
曾偉文、郭原齊、陳崇岳,2018,〈單一建築物倒塌現場緊急救護傷患作業模擬—以臺南大地震為例〉,《災害防救科技與管理學刊》,7 卷 2 期:頁 31-52。doi:10.6149/JDM.201809_7(2).0002
Jones, E. C., & Faas, A. J. 2016. Chapter 1: An introduction to social network analysis in disaster contexts. In E. C. Jones & A. J. Faas (Eds.), Social network analysis of disaster response, recovery, and adaptation: 3-9. Amsterdam, Netherlands: ScienceDirect. doi:10.1016/B978-0-12-805196-2.00001-7
Jung, K., & Park, H. W. 2016. Tracing interorganizational information networks during emergency response period: A webometric approach to the 2012 Gumi chemical spill in South Korea. Government Information Quarterly, 33: 133-141. doi:10.1016/j.giq.2015.09.010

延伸閱讀