透過您的圖書館登入
IP:18.191.189.85
  • 學位論文

微波低雜訊放大器及使用寬頻變壓器對稱放射狀功率結合技術之毫米波功率放大器研究

Research of Microwave Low-Noise Amplifiers and Millimeter-Wave Power Amplifier Using Wideband Transformer-Based Symmetric-Radial Power Combining Technique

指導教授 : 王暉

摘要


此論文將介紹三個製作於砷化鎵假型高速電子場效電晶體製程之低雜訊放大器及一個製作於互補式金屬氧化物半導體製程之寬頻功率放大器。前兩個設計於平方公里陣列天文應用之低雜訊放大器使用了相同的設計方法,並實現於不同的電路架構上,而第三個低雜訊放大器則是設計於K頻段之衛星通訊應用。 首先,兩個以0.15微米砷化鎵假型高速電子場效電晶體製程製作之L至S頻段低雜訊放大器使用了LC共振腔方法於第一級共源級與疊接式架構中。此LC共振腔之目的是用來製造出第二個額外的諧振器於等效輸入網路中,以達到寬頻的輸入匹配設計而不影響到整體低雜訊放大器之雜音指數。此兩個低雜訊放大器於平方公里陣列之操作頻段內(1.65-3.05 GHz)達到足夠的增益(高於30 dB)、大於10 dB之輸入及輸出反射波損耗,以及出色的雜音指數(0.75-0.99和0.67-0.9 dB)。它們同時達到了超過1.89 GHz之3 dB頻寬(1.45至3.34 GHz),而此頻寬超過了78.9%之比例頻寬。 再來,K頻段低雜訊放大器亦製作於0.15微米砷化鎵假型高速電子場效電晶體製程,並使用了雙輸入埠架構來接收衛星通訊之左手圓極化及右手圓極化訊號。此低雜訊放大器使用了兩個以並聯LC共振腔組成之帶阻濾波器於第一級和第二級之輸出端,用以壓抑鄰近高輸出功率發射機所產生之29 GHz漏訊號。此19.2 GHz低雜訊放大器消耗21毫瓦之直流功率,並於17.7至20.7 GHz頻率範圍中達到了21.8 ± 1 dB之小訊號增益、大於10 dB之輸入與輸出反射波損耗,以及於18至20.7 GHz中達到了1.77 dB之平均雜音指數。漏訊號壓抑則於27.5至30.5 GHz之發射機上行頻率間達到了16至20.2 dB。由於有此上行頻率之漏訊號壓抑,當29 GHz發射機之-10 dBm功率訊號漏至低雜訊放大器之輸入端埠時,此低雜訊放大器之小訊號增益只有0.1 dB之壓縮。 最後,V頻段寬頻功率放大器是以90奈米互補式金屬氧化物半導體製程實現,此設計中使用了四路變壓器之電流式放射狀輸出結合器。在此,一個應用於毫米波功率放大器之寬頻高效率功率結合技術的設計方法將於此研究與提出。此變壓器放射狀功率結合器只有1 dB之介入損耗(於60 GHz)及小的尺寸(0.04毫米平方),其被用來提供高功率結合以及寬頻負載拉移匹配。此提出之功率放大器於60 GHz操作頻率下達到了20.6 dBm之飽和輸出功率、20.3%之最大功率負加效率,以及20.1 dB之小訊號增益。由於此電流式放射狀輸出結合器達到了寬頻的負載拉移匹配,此功率放大器於50至64 GHz之操作頻率中,成功地維持了20 dBm之飽和輸出功率、高於17.3%之最大功率附加效率,以及達到了24.5 GHz之3 dB頻寬(41.8至66.3 GHz)。據作者所知,相較於其他已發表之60 GHz互補式金屬氧化物半導體功率放大器中,本論文所提出之功率放大器展示了最寬頻(50至64 GHz)的20 dBm飽和輸出功率及大於17%之最大功率附加效率。

並列摘要


This thesis presents three GaAs pHEMT low-noise amplifiers and one CMOS wideband power amplifier. The first two L-to-S band low-noise amplifiers are designed with the same method in different structures for square kilometer array (SKA) astronomical application, and the third low-noise amplifier is designed in K band for satellite communications. Firstly, the two L-to-S band low-noise amplifiers using 0.15-μm GaAs pHMET are designed with LC-tank method in the first stage of common-source and cascode structure. The purpose of the LC tank is to create a second extra resonator in the input equivalent network for achieving wideband input matching without degrading the noise figure. The two low-noise amplifiers achieve sufficient gains of over 30 dB, over 10-dB input and output (I/O) return losses, and excellent noise figure of 0.75-0.99 and 0.67-0.9 dB in SKA1-mid band-3 (1.65 to 3.05 GHz). Both of them have the 3-dB bandwidths of over 1.89 GHz from 1.45 to 3.34 GHz which are over 78.9% of fractional bandwidth. Secondly, the K-band low-noise amplifier also using 0.15-μm GaAs pHMET is designed in two input-port architecture for receiving the left-hand circular polarization (LHCP) and right-hand circular polarization (RHCP) signals of satellite communications. The low-noise amplifier uses the stop-band filters consisting of two parallel LC tanks at the output of first and second stages for suppressing the 29-GHz leakage signal from the nearby transmitter. This 19.2-GHz low-noise amplifier consuming dc power of 21 mW demonstrates the small-signal gain of 21.8 ± 1 dB, over 10-dB input and output return losses from 17.7 to 20.7 GHz, and achieves 1.77-dB average noise figure from 18 to 20.7 GHz. The leakage suppression is about 16 to 20.2 dB within the transmitter uplink frequency of 27.5 to 30.5 GHz. With the uplink leakage suppression, the small-signal gain of the low-noise amplifier has only 0.1-dB compression when the 29-GHz transmitter signal with power level of -10 dBm leaks to the input port of this low-noise amplifier. Finally, the V-band wideband power amplifier implemented in 90-nm CMOS is designed with a 4-way transformer-based current-type radial output combiner. A design methodology of the wideband and high-efficiency power combining for millimeter-wave power amplifiers is investigated and proposed. This transformer-based radial power combiner with only 1-dB insertion loss at 60 GHz and 0.04-mm2 compact size is designed for high output power combining and wideband load-pull matching. This power amplifier achieves saturated output power (PSAT) of 20.6 dBm, maximum power added efficiency (PAEmax) of 20.3%, and 20.1-dB small-signal gain at 60 GHz. Due to the wideband load-pull matching achieved by the current-type radial output combiner, the power amplifier successfully maintains wideband large-signal performances of 20-dBm PSAT with PAEmax better than 17.3% within 50 to 64 GHz, and it has a 3-dB bandwidth of 24.5 GHz from 41.8 to 66.3 GHz. To the author's best knowledge, this power amplifier demonstrates the widest frequency range (50 to 64 GHz) of 20-dBm PSAT and above 17% PAEmax in 60-GHz CMOS power amplifiers.

參考文獻


[2] Square Kilometre Array (SKA) website: https://www.skatelescope.org.
[4] G. Dambrine, et al., “A new method for determining the FET small-signal equiv-alent circuit,” IEEE Trans. Microw. Theory Techn., vol. 36, pp. 1151-1159, July 1998.
[6] R. Hu, “An 8-20-GHz wide-band LNA design and the analysis of its input matching mechanism,” IEEE Microw. Compon. Lett. (MWCL), vol. 14, no. 11, pp. 528-530, Nov. 2004.
[7] L. Belostotski, and J.W. Haslett, “Wide band room temperature 0.35-dB noise figure LNA in 90-nm bulk CMOS,” in IEEE Radio Wireless Symp. Dig. (RWS), Jan., 2007.
[8] L. Belostotski, and J.W. Haslett, “Sub-0.2 dB noise figure wideband room-temperature CMOS LNA with non-50 Ω signal-source impedance,” IEEE J. Solid-State Circuits (JSSC), vol. 42, no. 11, pp. 2492-2502, Nov. 2007.

被引用紀錄


Chang, T. T. (2016). 應用於無線通訊之瓦級高功率密度變壓器功率結合式LDMOS功率放大器之研製 [master's thesis, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU201603297

延伸閱讀