透過您的圖書館登入
IP:3.138.61.133
  • 學位論文

毫米波低雜訊放大器和低功率GPS/Galileo 雙頻接收機

Millimeter-wave Low Noise Amplifiers and Low Power Dual-Band GPS/Galileo Receiver

指導教授 : 陳怡然

摘要


無線通訊的便利性促進對於高資料傳輸速率的需求。為了達到高資料傳輸速率,則必須使用較寬的頻譜。最近許多無線通訊的應用都已經開始利用毫米波的頻段,利用本身提供的寬頻段,使得傳統上很擁擠的窄頻段應用能夠移到寬頻段去加以使用。然而由於電晶體本身在毫米波頻段先天性對於最大增益的限制,則新的電路想法與架構在對於優良性能的低雜訊放大器應用在毫米波頻段就是很重要的。 首先,我們介紹一個新型適用於毫米波頻段的消除雜訊的低雜訊放大器,本身對於製程偏移的敏感度非常低,故非常適用於高頻電路。消除雜訊的低雜訊放大器以0.15μm Phemt的製程來實作,操作電壓是1.2伏,總共消耗38毫瓦。 再來我們會介紹一個雙重增益補強的低雜訊放大器,能夠在60GHz 相同功率消耗下提供最佳的增益和電路性能。 雙重增益補強的低雜訊放大器以130奈米CMOS的製程來實作,操作電壓也是1.2伏,並且總共消耗19.2毫瓦。 最近對於高精確度高品質的衛星定位能力已經促使傳統的全球定位系統(GPS)延伸到結合全球定位系統與伽利略衛星定位系統。全球定位系統與伽利略衛星定位系統的目的是經由線性組合全球定位系統與伽利略衛星系統的衛星數來達到一個真正的全球導航衛星系統(GNSS). 有鑑於此,我們首先提出一個應用在全球定位系統與伽利略衛星定位系統 L1結合E5a兩個頻段的雙頻接收機。此系統僅僅使用一個頻率合成器即可達到同時接收雙頻的訊號。之後我們再介紹一些射頻前端的電路方塊的實作部份,包含主動式巴倫、頻率升頻器、低雜訊放大器、壓控掁盪器以及同相正交頻率器。 為了進一步達到低成本的要求,整體的接收機的操作電壓降到1伏並且採用130奈米CMOS的製程來實現。

並列摘要


The convenience of wireless communication services stimulates the demands of increasing communication data rates. To achieve high data rates, a wide frequency spectrum is required. Many emerging wireless applications have been explored at millimeter-wave (mm-wave) to move away from the over-crowded low-gigahertz range and take advantage of wide available frequency spectrum. However, due to the inherent limitation of maximum transducer gain in millimeter wave frequency, a new circuit scheme for mm-wave low noise amplifier is crucial for good performance. Firstly, we introduce one novel noise cancelling for mm-wave LNA which is suitable for robust process variation in high frequency. It is implemented in 0.15μm pHEMT process with 1.2V supply voltage and consumes only 38mW. Then, we introduce a double gain-boosting LNA for providing maximum transducer gain with the same power consumption in 60GHz. It is implemented in 130-nm CMOS process with 1.2V supply voltage and consumes only 19.2mW. Recently, the need for high quality positioning and satellite navigation capability has been stimulating the progress from conventional GPS( Global Positioning System) to exquisite GPS/Galileo system. The objective of GPS/Galileo system is linear combination the number of satellites of both (GPS and Galileo) system and become a truly GNSS solution. Based on this, we proposed a dual-band receiver for GPS/Galileo L1+E5a application which demonstrates a novel concurrent dual-band receiver architecture and takes only one synthesizer on the basis of cost issue. Then we introduce the front-end building blocks implementation which includes active balun、up-converter、LNA、synthesizer、VCO and I/Q mixer. To further achieve low cost requirement, the overall receiver are designed with 1V supply voltage and standard 130-nm CMOS technology.

並列關鍵字

LNA Receiver GPS

參考文獻


[1] A. Bevilacqua and A.M. Niknejad, “An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receiver,” in IEEE ISSCC Dig. Tech. Papers, 2004, pp. 382–383.
[2] Xiaoyong Li, Sudip Shekhar and David J. Allstot, “Gm-Boosted Common-Gate LNA and Differential Colpitts VCO/QVCO in 0.18- m CMOS,” IEEE J. Solid-State Circuits, vol. 40,no.12, pp. 2609–2619, Dec. 2005
[3] Adam L. Martin and Amir Mortazawi, “A New Lumped-Elements Power-Combining Amplifier Based on an Extended Resonance Technique,” IEEE Trans. Microwave Theory Techniques, vol. 48, no.9, pp. 1505–1515, Sep. 2000
[4] Chih-Fan Liao and Shen-Iuan Liu, “A Broadband Noise-Canceling CMOS LNA for 3.1–10.6-GHz UWB Receivers,” IEEE J. Solid-State Circuits, vol. 42,no.2, pp. 329–339, Feb. 2007
[6] Shih-Cheng Lin, Tsung-Nan Kuo, Yo-Shen Lin, and Chun Hsiung Chen, “Novel Coplanar-Waveguide Bandpass Filters Using Loaded Air-Bridge Enhanced Capacitors and Broadside-Coupled Transition Structures for Wideband Spurious Suppression,” IEEE Trans. Microwave Theory Techniques, vol. 54, no.8, pp. 3359–3369, Aug. 2006

延伸閱讀