透過您的圖書館登入
IP:3.128.203.143
  • 學位論文

應用於天文接收機之差動低雜訊放大器與應用於5G通訊之K-頻高效率CMOS功率放大器設計

Design of Differential LNA for Radio Astronomy Receiver and High-Efficiency K-band CMOS-Based Power Amplifier with Inductance-Based Neutralization for 5G Communication.

指導教授 : 王暉
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文將探討一個應用於天文接收機之差動轉單端低雜訊放大器晶片的設計及量測方法和量測成果與一個應用於第五代行動通訊之使用新式中和化技術之K-頻高效率CMOS功率放大器晶片的設計和量測結果。 首先是應用於大型陣列式天文電波接收機所設計之差動輸入-單端輸出架構砷化鎵低雜訊放大器,設計的操作頻段為1.5 GHz-3.7 GHz。為了進行高度可靠之系統整合及更低之系統雜訊(Noise Figure),此晶片採全整合設計,不需要任何晶片外電路及匹配即可運作。此晶片將非平衡-平衡轉換器整合於晶片上之第一級低雜訊放大核心後端以降低系統雜訊。另外本文將介紹針對差動輸入-單端輸出元件之Noise Figure量測及校正方法。此電路量測之增益為31.8 dB、Noise Figure為0.73 dB、電源消耗功率為25 mW,模擬結果與量測結果合理符合。 接著是應用於第五代行動通訊收發機、ISM頻段通訊收發機所設計之高效率、高輸出功率90-nm CMOS射頻功率放大器。操作的輸出功率頻段為22-30 GHz。此電路採用創新式中和化技術以解決電路穩定性問題,由於電路穩定性問題被解決,因此針對輸出功率和效率最佳化之電晶體尺寸配置可以使用在晶片上以達到高輸出功率及高效率。另外,此晶片使用非對稱式匹配變壓器來降低相位偏移問題,以達到更高之輸出功率及效率。此晶片於28GHz之量測增益為16.3 dB、飽和輸出功率為26 dBm、功率附加效率(PAE)為34%、晶片面積為0.401平方毫米。

並列摘要


This thesis presents the design and measurement results of a differential input to single-ended output low noise amplifier (DLNA) and a K-band CMOS-based power amplifier with inductance-based neutralization. In the first part, a fully-integrated differential low noise amplifier designed for the SKA-mid band-3 receiver used in SKA radio astronomical telescope is presented. The DLNA is designed and fabricated in GaAs high electron mobility transistor. The targeted operating frequency is from 1.5 to 3.2 GHz. The fully on-chip lumped LC balun is designed to achieve lower power consumption and noise figure. The measurement results demonstrate 1-dB bandwidth from 1.5 to 3.7 GHz, 31.8-dB gain and average in-band noise figure of 0.73 dB with dc power consumption of 25 mW. In the second part, a fully-integrated K-band transformer combined power amplifier (PA) with novel neutralization technique is presented and implemented in 90-nm CMOS process for 5G communication and 24-GHz ISM-band applications. The asymmetrical transformers are designed to compensate phase imbalance. The inductance-based neutralization structure is utilized to cope with the overall stability issue. Thus, the optimal transistor sizes can be chosen to achieve high output power and power added efficiency (PAE). The measurement results demonstrate 16.3-dB small-signal gain, saturated power (Psat) of 26.0 dBm, output 1-dB compression point (OP1dB) of 23.2 dBm, and peak PAE of 34% at 28 GHz with the chip size of 0.401 mm2.

並列關鍵字

SKA Low Noise Amplifier pHEMT Differential Power Amplifier 5G ISM K-band CMOS Neutralization Transformer

參考文獻


[1] SKA Website [Online] https://www.skatelescope.org/
[2] P. E. Dewdney, P. J. Hall, R. T. Schilizzi, et al., “The square kilometre array,” in Proc. of the IEEE, vol. 97, no. 8, pp. 1482-1496, Aug, 2009.
[3] R. V. L. Hartley, "Transmission of Information," in Bell System Technical Journal, July, 1928.
[4] C. E. Shannon, "Communication in the presence of noise," in Proceedings of the Institute of Radio Engineers, January 1949.
[5] Industrial, scientific and medical (ISM) applications (of radio frequency energy) / ISM application, Article 1.15, Section IV, ITU Radio Regulations. [Online] https://www.itu.int/en/Pages/default.aspx

延伸閱讀