透過您的圖書館登入
IP:3.149.238.159
  • 學位論文

CMOS射頻與生醫系統電路

CMOS Radio-Frequency and Biomedical SoCs

指導教授 : 呂學士

摘要


物聯網(IOT)的議題已經逐漸被重視,範圍在消費性電子產品、居家智慧生活和遙控醫療照護,整合行動通訊和網際網路等系統,物聯網需要低功率的射頻和生醫電路,在本論文中,低功率消耗電路技術被研究用在射頻和生醫電路,射頻電路在傳輸高速資料通常消耗大量的功率,人體的生醫植入電路需要低功率消耗的電路增加使用壽命,才可以減少再次做植入手術的狀況,本論文使用一些技術,電路在低功率消耗的狀態下還有好的能力,本論文設計的電路用在射頻和生醫,射頻電路有2.4 ~ 6 GHz寬頻低雜訊放大器、2.4 GHz循環器和V-band (57.2 ~ 65.8 GHz) 鏡像消除接收機前端電路,生醫電路有MICS-band (402 ~ 405 MHz) OOK/FSK接收機和10 MHz電解氣泡推動之無線給電遙控移動晶片。 2.4 ~ 6 GHz寬頻低雜訊放大器使用LC負載再利用的技術達成寬頻,再使用高線性度技術讓電路保持好的線性度(IIP3),IIP3是-3.9 ~ -1.9 dBm。2.4 GHz循環器使用電流再利用和可調整訊號消除技術達成了低功率、高發射器接收器隔離度和小晶片面積,隔離度是68 dB,功率消耗是1.5 mW,晶片面積是0.62 mm2。V-band前端電路使用高速自動喚醒和增益控制技術,若沒有無線訊號電路休息,功率消耗是19 mW,若有無線訊號會自動喚醒電路,功率消耗是46 mW,若無線訊號振幅過大自動調整增益和輸入線性度(IP1dB),IP1dB是-22.5 ~ -25.2 dBm,電路使用小晶片面積的被動相位移耦合器和混頻器實現鏡像消除,鏡像消除率是32 dB,晶片面積是0.82 mm2。MICS-band OOK/FSK接收機使用自動喚醒、線性度、次諧波混頻和低截止電壓技術,電路休息的功率消耗是129 μW,電路喚醒的功率消耗是352 μW。10 MHz電解氣泡推動之無線給電遙控移動晶片可以在人體中移動,利用無線給電提供能量控制晶片,電解的氣泡可以讓晶片在電解液移動速率是 0.3 mm/s,功率消耗是207.4 μW和180 μW。

並列摘要


Recently, internet of things (IOT), including consumer electronics, smart home, and telemedicine, is important. IOT integrating communications and internets needs low-power radio-frequency (RF) and biomedical products. In this dissertation, several low-power techniques have been developed for RF and biomedical circuits for extending enough battery life. And degrading circuit performances resulting from the low-power techniques have also been resolved in the following sections. The RF circuits include a 2.4 ~ 6 GHz wideband low-noise amplifier (LNA), a 2.4 GHz quasi-circulator, and a V-band (57.2 ~ 65.8 GHz) image-reject receiver front-end. The biomedical circuits include a MICS-band (402 ~ 405 MHz) OOK/FSK receiver, and a 10-MHz remotely-controlled locomotive IC driven by electrolytic bubbles and wireless powering. The LNA uses the LC load-reusing and multiple-gated techniques with IIP3 of -3.9 ~ -1.9 dBm and a power consumption of 6 mW. The quasi-circulator uses a current-reuse technique and adjustable signal cancellation. The measured isolation from transmitter to receiver, |S31|, is 68 dB with a power consumption of 1.5 mW and a chip size of 0.62 mm2. The V-band receiver front-end with high-speed auto wake-up and gain controls varies power consumptions depending on the input RF signal power. The measured power consumptions are 19 mW and 46mW, respectively. IP1dB also can be adjusted between −25.2 dBm and −22.5 dBm. The measured image-reject ratio (IRR) is greater than 32 dB. The chip size is 0.82 mm2. The MICS-band OOK-FSK receiver uses wake-up, multiple-gated, subharmonic-mixing, and body-forward-biasing techniques with measured power consumptions of 129 μW and 352 μW, respectively. The locomotive IC can move on electrolyte with a speed up to 0.3 mm/s with power consumption of 207.4 μW and 180μW, respectively.

參考文獻


Chapter 1:
[1.2] B. Razavi, “A 60-GHz CMOS receiver front-end,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 17–22, Jan. 2006.
[1.3] S. Min, S. Shashidharan, M. Stevens, T. Copani, S. Kiaei, B. Bakkaloglu, S. Chakraborty, “A 2mW CMOS MICS-Band BFSK transceiver with reconfigurable antenna interface,” in Proc. RFIC Symp., 2010, pp. 289–292.
[1.4] T. Wada, et al., “60-GHz, 9-µW wake-up receiver for short range wireless communications,” in Proc. ESSCIRC, 2013, pp. 383–386.
[1.8] P. Valdastri, R. J. Webster, C. Quaglia, M. Quirini, A. Menciassi, and P. Dario, “A new mechanism for mesoscale legged locomotion in compliant tubular environments,” IEEE Trans. Robot., vol. 25, no. 5, pp. 1047–1057, Oct. 2009.

延伸閱讀


國際替代計量