透過您的圖書館登入
IP:3.138.141.202
  • 學位論文

微型三次元量測儀體積誤差補償之研究

Research on the Volumetric Error Compensation of Micro Coordinate Measuring Machine

指導教授 : 范光照
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文為微型三次元量測儀體積誤差補償之研究,希望藉由本實驗室自行開發 的各種系統,回授補償各種誤差,以達體積誤差修正而能提升量測能力之目的, 其中包含將量測儀組裝時的各項幾何誤差補償,如垂直度誤差與角度所造成的阿 貝誤差以及多自由度量測系統(MDFMS)的波長量測補償模組與量測光面鏡之形 貌誤差補。 文中將介紹微型三次元量測儀之各硬體部分,包括共平面平台、Z 軸、探頭、 波長補償模組及感測器,感測器包含作為位置回授的線性繞射光柵干涉儀 (LDGI)以及多自由度量測系統(MDFMS)。 本研究中利用穿透式光柵與自動視準儀結合成波長補償模組,並以市售 SIOS 雷射干涉儀比對校正出感測器之絕對波長,提高平台定位的準確度。另外就體積 誤差補償部分,整合面鏡誤差、光程差、阿貝誤差、垂直度誤差與平坦度誤差, 推導出一套完整體積誤差模型,在誤差模型下實現體積誤差自校正之功能。 而在探頭球頭部分,則以商用光纖熔接機搭配各項機構,設計出一套低成本 快速生產之製程,組裝後的探頭達到直徑< 50 μm,真圓度< 1 μm,偏心量< 1 μm之需求,將可應用於高深寬比等傳統不易量測之工件。 最後結合接觸式掃描探頭做量測應用,可以觸發功能量測出實際點,利用後 處理方式運算,計算出階高與組裝配合誤差。配合掃描程式量測綠點科技微透鏡, 推廣了微型三次元量測儀於小型複雜工件之量測應用。

並列摘要


In the modern metrological technology, traditional coordinate measuring machines (CMM) is not able to satisfy the required precision and accuracy in micro/nano scale. Therefore, NTU Metrology Lab developed a Micro coordinate measuring machine (Micro-CMM) with high precision. This research presents the combination of industrial techniques, including an Abbe free XY Co-planar stage, Z-axis ram, scanning probe and high-resolution sensors. Based on these parts, the goal of this research is to improve Micro-CMM, which contains Laser wavelength error and volumetric error. For the wavelength part, this research designs a wavelength compensator by transmission grating and temperature sensor, and calibrates the real wavelength under temperature variation. Besides, this research builds a volumetric model, verified by experiments of Abbe error, perpendicular error, flatness error and mirror error. By this volumetric error model, the performance of Micro-CMM will be promoted well. This research also improves the method of the fabrication process of optical fiber tip ball. By this method, the fiber is heated to melting point and extruded before forming the tip ball. The result tip ball diameter is around 50μm, and it’s much better than commercial products. Finally, apply the Micro-CMM to measure different parts with various functions, such as small lens and commercial camera model.

參考文獻


[1] Taniguchi N. Current Status in, and Future Trends of, Ultraprecision Machining and Ultrafine Materials Processing. CIRP Annals - Manufacturing Technology. 1983;32:573-82.
[2] Hansen HN, Carneiro K, Haitjema H, De Chiffre L. Dimensional micro and nano metrology. Cirp Ann-Manuf Techn. 2006;55:721-43.
[5] Takamasu K, Fujiwara M, Naoi H, Ozono S. Friction drive system for nano-CMM. Proc Mechatronics, Poland. 2000:565-8.
[6] Fujiwara M, Takamasu K, Ozono S. Evaluation of Properties of Nano-CMM by Thermal Drift and Tilt Angle. Proc XVII IMEKO World Congress (June, Dobrovnik, Croatia). 2003;1797.
[7] Peggs GN, Lewis AJ, Oldfield S. Design for a Compact High-Accuracy CMM. CIRP Annals - Manufacturing Technology. 1999;48:417-20.

延伸閱讀