透過您的圖書館登入
IP:18.218.168.16
  • 學位論文

應用於毫米波之低雜訊放大器、正交解調器與功率放大器之研製

Research of Low Noise Amplifier, I/Q Demodulator, and Power Amplifier for Millimeter-wave Applications

指導教授 : 王暉

摘要


此論文依據不同應用的三個毫米波前端電路而分成三個部份論述。 第一部分呈現一個利用0.15微米高速電子遷移率電晶體製程(HEMT)設計應用於天文觀測的Q頻段低雜訊放大器(LNA)。此低雜訊放大器採用π型和補償式匹配結構來達到寬頻的效果,在62.6毫瓦直流功耗下,於28.5 to 50.5 GHz範圍有著23分貝(dB)的增益,而於35 to 50 GHz有著 3.8分貝的雜訊指數(Noise Figure)。 第二部分闡述一個實現在90奈米金氧半場效電晶體製程(CMOS)用於E頻段點對點傳輸的正交解調器(I/Q demodulator)。採用推進式次諧波混頻器(sub-harmonic mixer)的架構,此解調器在26.6毫瓦功耗和4 dBm 本地振盪(LO)能量下達到-3 dB的轉換增益,此外,因為所用的45度訊號分配器有著大小和相位可調節的功能,此解調器有大於40 dBc鏡像抑制比且顯示8.2% 誤差向量幅度(EVM) 16正交幅度調變(QAM)下的高速資料傳輸。 最後一部分是一個以40奈米金氧半場效電晶體製程設計的38-GHz相位陣列系統的功率放大器(PA)。此功率放大器利用類似多赫提(Doherty)的結構在靜態操作下只留有一半的電路載運作,而為了增加增益與提升效率,採用中和電容(neutralization)與變壓器(transformer)匹配的技巧,在67毫瓦直流功耗下, 達到14-dBm的飽和功率(PSAT)、11.5-dBm 的1 dB增益壓縮點功率(OP1dB)、19.3 % 的最大功率附加效率(PAEpeak)、 14 % 的1分貝增益壓縮點功率附加效率(PAE@OP1dB)和 8 % 的飽和功率回推6分貝功率附加效率(PAE@back-off 6dB)。

並列摘要


This thesis is divided into three parts by three critical MMW front-end circuits for different applications. The first part presents a Q-band LNA using 0.15-μm GaAs pHEMT process for the radio astronomy applications. By adopting π-type and compensated matching networks, the LNA achieves broadband performance. The LNA attains 23 dB small signal gain from 28.5 to 50.5 GHz and a measured noise figure of 3.8 dB from 35 to 50 GHz with 62.6-mW dc power consumption. The second part exhibits an I/Q demodulator in 90-nm CMOS process for E-band point-to-point communication. The demodulator attains -3-dB conversion gain with only 26.6-mW power consumption and 4-dBm LO power by adopting push-push based sub-harmonic mixers. With the tunable capability of the 45° power divider, the demodulator achieves outstanding IRR higher than 40 dBc from 76 to 88 GHz, and demonstrates gigabit data rate transmission of 8.2% EVM 16-QAM modulation. The last part illustrates a PA using 40-nm CMOS process for a 38-GHz phased-array system. By using quasi-Doherty core, the proposed PA leaves only half of the combined paths in quiescent state. Besides, neutralization techniques and transformer matching are applied to the PA for gain and efficiency enhancement respectively. The PA attains 14-dBm PSAT, 11.5-dBm OP1dB, 19.3 % PAEpeak, 14 % PAE@OP1dB, and 8 % PAE@back-off 6dB in 67-mW dc power consumption.

參考文獻


[1] T. S. Rappaport, A. Annarnalai, R. M. Buehrer and W. H. Tranter, “Wireless communications: past events and a future perspective”, IEEE Communications Magazine, vol. 40, no. 5, pp. 148-161, 2002.
[2] S. Rangan, T. S.Rappaport, and E. Erkip, “Millimeter-wave cellular wireless networks: potentials and challenges”, Proceedings of the IEEE, vol. 102, no. 3, p.p. 366 – 385, March 2014.
[3] A. Hajimiri, “mm-wave silicon ICs: challenges and opportunities”, IEEE Custom Integrated Circuits Conference (CICC), pp. 741-747, 2007.
[4] European Southern Observatory website:
[5] Atacama Large Millimeter/submillimeter Array website:

延伸閱讀