本論文主要在研究奈米等級的量測儀器之設計與組裝,在文中一共研製了三台機器,其分別為微型奈米三次元量測儀的整機、微形NC銑削工具機的共平面平台、與奈米高度計。 基於本實驗室自行開發的雷射繞射式光學尺與DVD位移計之容許角度公差需求,在本文中的第二章探討了如何運用撓性機構並配合Ansys之Design Exploration模組與田口法來設計出兩維最佳化的撓性角度微調座。 由於微型奈米三次元量測儀在零件尺寸、零件精度與零件組合裝配上與一般三次元量床極為不同,因此在本文第三章中研究合適的輔助檢驗調校儀器與精密調整法,其中包含了如何調整空間物體垂直度、平行度、共面度與微小角度的方法。 第四章為研究如何設計與組裝兩種不同構造的共平面平台,本章中提到運用線性滑軌靜安全係數分析、原件替換分析、構造簡圖和廣義鍊來創成機構與確定機構的穩定性,最後運用幾何學分別建立兩台共平面平台的組裝誤差分析,另外為了確保共平面平台之運行精度,最後以實驗結果來驗證。 第五章主要探討如何設計與組裝微型奈米三次元量測儀的Z軸,並且運用振幅實驗去輔助驗證其設計的可靠性,也運用了原件替換分析、構造簡圖、廣義鍊來設計出此同軸配重的創新機構。另外運用了交叉滑軌靜安全係數分析確保運行穩定性;此外為了增加配重負載效率與了解滑輪組特性,本研究運用了原件結構關係分析表來探討。最後建立組裝誤差分析和實驗來確保量測Z軸之運行精度。 第六章為探討如何設計與組裝一台奈米高度計,主要系統可分為四模組: 傳動系統、量測系統、控制系統與訊號細分系統,基於了解其量測性能,也研究組裝誤差分析以及配重之設計。實際量測實驗結果證明其量測的重覆性可達10奈米以內。
This thesis studies and develops the design and assembly methodology of Nano-scale measurement machines. Three types of machines are developed, namely a micro coordinate measuring machine (Micro-CMM), a co-planar stage of micro milling machine, and a nano height gauge. In Chapter 2, for adapting the assembly tolerance of the Laser diffraction grating interferometer (LDGI) and the DVD displacement sensor, an optimum flexure mechanism for angle adjustment is developed and introduced. Because the accuracy requirement of the Micro-CMM is stricter than the conventional CMM, the assisted measurement and adjustment methods are becoming more urgent and critical. Chapter 3 studies and develops a set of methods to precisely adjust and align machine components in spatial co-planarity, squareness and parallelism. Chapter 4 studies how to design and assemble two kinds of coplanar stages for Micro-CMM and micro milling machine, respectively. The static safe factor analysis of linear guide, part replacement analysis, structural sketch and generalized chain are used to ensure the functionality and reliability of coplanar stages. The assembly errors are validated by experiments. Chapter 5 studies how to design and assemble the Z-axis stage of Micro-CMM. Vibration experiments are carried out to assist the design. The part replacement analysis, structural sketch and generalized chain are used to the creative design of the z-axis stage. In addition, the static safe factor analysis of cross roller guide has been carried out to ensure the functioning reliability of the Z-axis. Besides, In order to increase the load efficiency, and understand the pulley system characteristic, the element configuration table is used. Finally, experiments and assembly error analyses are carried out to prove the measuring stability of the Z-axis. Chapter 6 studies how to design and assemble a height measuring machine in nanometer resolution. It includes four main modules: transmission module, measurement module, control module and signal subdivision module. In order to achieve accuracy and repeatability, the assembly error analysis and counter weight analysis are studied. Experiments show the repeatability of less than 10nm can be reached.