透過您的圖書館登入
IP:18.117.216.36
  • 學位論文

次波長金屬孔洞陣列結構應用於太陽能電池電極之研究

Study of Sub-Wavelength Metallic Hole-Arrays on Electrode Layouts of Solar Cells

指導教授 : 陳學禮
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


太陽能電池中金屬電極部分為不透光之區域,將造成光電轉換上能量之損失。本論文將應用近年來已廣泛研究之表面電漿現象於金屬電極上,及有利於元件擷取能量之金屬電極佈局方式,設計實驗並討論其光電轉換效率增益之能力。對於太陽能電池,有效利用光能產生載子,且有效收集載子產生電能,為提升太陽能電池效率之基本原則。藉由金屬電極上製作二維次波長孔洞陣列產生之表面電漿共振現象,將可於金屬電極下方之區域產生載子,且經由P-N接面深淺之調整,將能達成載子有效產生之目的;而改善金屬電極於太陽能電池上之佈局方式,如接觸窗口(Contact Window),將能達到載子有效收集之效果。 在此論文中,主要探討由孔洞陣列所貢獻之光電流增益,並搭配其他布局方式,故定義出孔洞陣列區域之電流密度,與矽吸收區之電流密度比值(JRatio, JHole/JTest),以突顯電殛上孔洞陣列對元件光電轉換之貢獻,亦為本論文探討之重要依據。首先針對電極接觸窗口佈局做設計並實驗,發現具有在相同孔洞陣列形式之金屬電極,在相同接觸窗口面積之情況下,增加接觸窗口與晶片之接觸面積將有利於載子之收集,但同時必須考慮孔洞陣列之連續程度。其中以三條長形之接觸窗口形式(Contact III)具有最佳之效果。 二維次波長孔洞陣列形式之設計將利用嚴格耦合分析模擬軟體(RCWA)與三維有限差分時域(3D-FDTD)模擬,模擬孔洞陣列結構形式為矩陣型(Matrix)及最密堆積型(Hexagonal),於太陽光AM1.5之光譜中,何者較有利於太陽能電池工作波段下光能之利用,並以實際製作元件加以驗證。結果發現,最密堆積型具有較好之效果,當孔洞陣列為400nm直徑、800nm周期時,其JRatio更可達1.84。P-N接面之深淺亦會影響載子產生之能力,於實驗中發現太深及太淺皆不能使元件有較好之光電轉換能力。最後針對不同金屬電極面積比例之太陽能電池量測及分析,其中也包含了具實際太陽能電池電極面積比例15%之元件,由此部分之實驗也可得知,金屬電極面積所佔比例與孔洞陣列所佔比例間具有一最佳之狀態,且不論多少金屬電極比例,其JRatio都約在1.4~1.6附近,及對面積歸一化後之外部量子效率圖譜(Normalized EQE)也都趨於一致,此結果也可與異常穿透現象所定義之有效孔徑比(Effective Cross Section)相呼應,也代表製作二維次波長孔洞陣列於太陽能電池之金屬電極上具有增加光電轉換能力之貢獻。

並列摘要


The area of the metal electrode on a solar cell is an opaque region, and that causes the efficiency lost. In this study, we applied the surface plasmon resonance (SPR) phenomenon on electrodes of solar cells to improve the incident light collection. We designed the layout of metal electrodes to find the enhancement of efficiency on the solar cells. Utilizing the sub-wavelength metallic hole arrays to induced SPR phenomenon, the carrier could generate just below the electrode region, and via adjust the depth of P-N junction in device, the efficiency enhancement could be achieve. We designed the devices with different contact window types, the arrangement of metallic hole arrays was simulated by Rigorous Coupled Wave Analysis (RCWA) and Three Dimensional Finite-Difference Time-Domain (3D-FDTD) methods. According to the simulation, we fabricated the device and found that the hexagonal hole array structure possesses better efficiency than other structures. Furthermore, the depth of P-N junction also affects the carrier generated ability. We measured and analyzed the device with different metal electrode area ration, and found that had an optimum condition between the ration of metal electrode and the ration of hole arrays. The normalized external quantum efficiency (EQE) also demonstrated the similar relation between ration of metal electrode area and efficiency. The efficiency enhancement in this study might come from the “effective cross section” increased for the SPR phenomenon.

參考文獻


[1] Lin Panga,Grace M. Hwang,Boris Slutsky and Yeshaiahu Fainman ”Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor” APPLIED PHYSICS LETTERS, 91, 123112 (2007)
[2] Thomas H. Reilly III, Jao van de Lagemaat, Robert C. Tenent, Anthony J. Morfa,
and Kathy L. Rowlen “Surface-plasmon enhanced transparent electrodes in organic photovoltaics” APPLIED PHYSICS LETTERS, 92, 243304 (2008)
[3] J. Hetterich, G. Bastian, N. A. Gippius, S. G. Tikhodeev, G. von Plessen, and U. Lemmer ”Optimized Design of Plasmonic MSM Photodetector” IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 43, NO. 10, OCTOBER 2007
[4] 吳民耀, 劉威志 ”表面電漿子理論與模擬” 物理雙月刊(廿八卷二期) 2006 年4 月

延伸閱讀