本篇論文以硬體描述語言來撰寫硬體架構,並以數位積體電路元件庫設計流程,來設計與製作一顆專為三相感應馬達控制用之直接轉矩控制(Direct Torque Control,DTC)晶片。 直接轉矩控制的原理為經由偵測馬達三相電壓、三相電流與轉子轉速來計算出馬達合成磁通量、合成磁通位置與馬達轉矩,經由電壓向量切換表來選擇適當的變頻器功率電晶體的切換狀態,以獲得穩定的馬達速度響應;並採用模糊控制的觀念設計比例積分控制器,可依據馬達回授轉速來調整控制器參數,改善速度響應的時間。 我們運用硬體描述語言撰寫出系統的運作模式,並確認功能正確無誤後,再使用ASIC(Application-Specific Integrated Circuit) 開發平台,藉由台積電TSMC0.18μm製程的元件庫與Synopsys和Candence公司所提供的最佳化軟體來完成電路合成、自動佈局繞線與驗證等晶片開發程序,最後完成整個三相感應電動機之直接轉矩控制系統晶片的設計與製作。
In this thesis, we use the hardware description language to code the hardware architecture, and the cell-based digital IC design flow is used to design the motor control IC of Direct Torque Control (DTC) system. The principle of the DTC system is to detecte the three-phase voltage, three-phase current, and rotor’s speed for calculating combination flux, combination flux position and motor’s torque. Then it properly chooses switch state of inverter appropriately to get a stable speed response. We apply the concept of fuzzy control to design proportion-integration controller. According to the feedback speed, the controller will change parameters to improve speed response time. We employ hardware description language to code the system function and then examine the functionality work. The ASIC implementation platform with TSMC 0.18μm library, Synopsys software and Candence software are employed for circuit implementation. The functions of the software include circuit compiling, auto routing and design verification for chip implementation. Finally, we have complete the design and implementation of the DTC system chip design for induction motor.