本論文的研究重點分為兩個部份,第一部份:利用電流模式主動元件,藉由線性轉換(linear transformation)的方式合成高階主動低通濾波器。此設計方式具有系統化設計流程、電路設計較簡單、最少主動元件以及電阻與電容均接地等優點。以電流差分轉導放大器組成三階電流模式可調頻寬低通濾波器採用TSMC 0.18μm 1P6M製程,電源電壓為±0.9V,頻寬可以做調整(400 KHz~7.6 MHz),功率消耗為2.79 mW,晶片面積為0.811×0.465 mm2 (不含PAD)。第二部份:目標在設計自動調變系統(Automatic Tuning System),因積體電路會有製程飄移,導致濾波器的頻寬會受到影響;最糟的情況下,時間常數會有25%的漂移量,而這個機制就是將最後製程輸出的結果可與自動調整系統設定的結果作比較,修正到預設的結果,將所要的頻寬鎖在固定的範圍,便可以大幅提升濾波器的準確性。利用相位/頻率偵測器自動校正之電流模式低通濾波器採用TSMC 0.18μm 1P6M製程,頻寬可以做調整(850 KHz~2.2 Mhz),電源電壓為±0.9 V,功率消耗為22.3 mW,晶片面積為0.983×0.983 mm2 (不含PAD)。
The major research of this thesis can be divided into two parts. The first part is to implement high-order active low pass filter by using many kinds of current-mode active elements and the linear transformation synthesis method. The design method works with the following merits:systematic design procedures, simple design equations, minimize active elements, and all grounded resistors and capacitors. The current differencing transconductance amplifier circuit is implemented using TSMC 0.18μm 1P6M process whose power supply is ±0.9 V, bandwidth is from 400 kHz to 7.6 MHz,the power consumption is 2.79 mW, and the chip area without PAD is 0.811×0.465 mm2. The second part is to design an auto tuning system. There is a severe problem in filter. That is, the cut-off frequency of the on-chip filter deviates nonnegligibly from the designed value because of time-constant deviation by process variation. In worst case, 25% time-constant deviation must be tolerated. Therefore, automatic tuning circuits for these filters are needed to overcome this problem. Automatic tuning method of current mode Butterworth lowpass filter using phase/frequency detector is implemented using TSMC 0.18μm 1P6M process whose power supply is ±0.9 V, bandwidth is from 850 KHz to 2.2 MHz,the power consumption is 22.3mW, and the chip area without PAD is 0.983×0.983 mm2.