透過您的圖書館登入
IP:18.218.184.214
  • 學位論文

奈米結構塗層表面之超疏水/疏油行為探討

The Study on Super Water and Oil Repellency of Nano-structural Surfaces

指導教授 : 謝建德

摘要


本研究證明了二氧化矽奈米球塗佈在微米結構碳布上,能夠達到穩定的超疏水特性,並發現增加碳布上二氧化矽密度可以明顯提高水珠的接觸角、減少表面遲滯現象並提升超疏水的穩定性。因此,基於上述結論,本研究更進一步證明使用次微米尺度的二氧化矽球與奈米碳管裝飾在微米尺度的碳布上,可以達到比之前更好且 具低遲滯現象的穩定超疏水表面。 本研究證明含氟多層次奈米/次微米二氧化矽球,不但能夠疏表面張力在23.4 mN/m到73.2 mN/m的溶液,且對於常用的葵花油有穩定的超疏油特性,且能夠維持在至少三天的時間。吾人發現二氧化矽奈米球所組成的表面,提供了許多孔洞及縫隙來防止油滴滲入,也就是Cassie理論所說的表面空氣薄膜能夠保護每個次微米球不受到油滴污染,進而導致超疏油特性。因此,吾人歸納了超疏油行為之所以有明顯的提升的三個原因:(1)表面氟化(低表面張力),(2)表面型態(粗糙度)及(3)合併奈米/次微米結構所形成的多層次仿生表 面。

並列摘要


This study demonstrates the hydrophobic coating of silica nanoparticles onto microscaled carbon fabrics (CFs) and investigates the superhydrophobic behavior of composite nano/microstructures. Increasing the density of silica on CFs showed significant effects on the enhancement of static contact angle, decrease of contact angle hysteresis, and superhydrophobic stability. This study demonstrates the creation of a stable superhydrophobic surface with low contact angle hysteresis using microscale carbon fabrics decorated with submicroscale silica spheres and carbon nanotubes (CNTs). The present study demonstrates the creation of a stable superhydrophobic and superoleophobicity surface using a hierarchical nano/submicron silica sphere stacking layer with a thin fluorination coating on the surface of spheres. The super repellent surface not only repels the liquids with surface tension, ranged from 23.4 mN/m to 73.2 mN/m, but also shows a stable superoleophobicity toward sunflower oil at least for three days. The deposition of nanospheres provides the nanoscale cavity to repel the oil penetration, referring to the Cassie state. Thus, there is an existing thin air film that is able to protect each submicron sphere from oil contamination, thus leading to the superoleophobicity. The significant enhancement of super oil repellency can be attributed to the facts: (i) surface fluorination (low surface tension), (ii) surface topography (roughness), and (iii) the creation of bionic surface hierarchically combined with nano/submicron architecture.

參考文獻


6. 欣創達科技股份有限公司
5. W. Barthlott, C. Neinhuis. Planta 1997, 202, 1.
8. Z. Yuan, H. Chen, J. Tang, X. Chen, D. Zhao, Z. Wang. Surf. Coat.
Technol. 2007, 201, 7138.
9. MAIS Vision Inspection & Measurement Co., Ltd.

被引用紀錄


莊儀(2013)。光固化-易潔塗層製作〔碩士論文,元智大學〕。華藝線上圖書館。https://doi.org/10.6838/YZU.2013.00022
林政毅(2011)。利用射頻電容耦合式四氟乙烷電漿沉積疏水薄膜〔碩士論文,元智大學〕。華藝線上圖書館。https://doi.org/10.6838/YZU.2011.00170
曾奕耀(2012)。以四氟乙烷電漿對微生物纖維素膜及硝酸纖維膜進行疏水化處理與表面特性探討〔碩士論文,元智大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0009-2801201415011894
卓彥宏(2012)。聚四氟乙烯與類鑽碳複合薄膜雙疏性與光學性質之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-3107201218452200

延伸閱讀