透過您的圖書館登入
IP:3.17.203.68
  • 學位論文

銀鑲嵌氧化鋁矽奈米複合結構之退火及抗菌特性研究

Silver-Embedded on Aluminum/Silica Nanocomposite : Annealing and Antibacterial Properties

指導教授 : 施漢章 葉均蔚

摘要


本研究成功將銀奈米粒子與銀離子在經過溶凝膠法(sol-gel) 反應 之後均勻嵌載氧化矽鋁的非晶結構表面及內部,其中鋁原子的導入扮 演關鍵性的角色,為銀離子(Ag+) 均勻分佈在整體二氧化矽載體的主 要原因。[AlO4]− 四面體結構和Ag+ 的交互作用導致Ag+ 藉著庫倫靜電力散佈在主體結構,進而完整呈現Ag+ 嵌載在Al-O-Si 鍵結狀態的結構(樣品A)。 為了驗證鋁原子的重要性,額外對照組樣品(樣品B) 的製備方法 和條件和氧化矽鋁奈米微球完全相同,僅移除含水硝酸鋁的前驅物添 加步驟,確保合成產物不含鋁成分。擁有此特殊結構的樣品之後經由 氧氣氣氛的退火處理保持溫度範圍區間介於250-1000◦C。 銀原子和一價銀離子在表面的比例是不斷隨著退火條件而改變, 原則上可劃分成三階段演變態,低溫銀粒子率先還原在表面,當溫度 漸升銀原子滿足離子化條件隨即轉換成離子態,更高溫甚至可能有液 化與脫落的現象發生。 XPS 的分析將更具體詮釋表面銀原子和銀離子含量數據化的結果, 由計算分峰曲線下的面積比例得知含量。為了舉出銀離子存在的證明,將用氧氣退火至1000◦C 的樣品A 和樣品B,實行二階段N2 混H2 的氣氛退火到600◦C,結果顯示原本兩者表面都呈現光滑無銀粒子,卻只在有鋁摻雜的樣品A 中發現消失銀粒子的再現,驗證銀離子存在的可能性。 感應耦合電漿(ICP) 分析能偵測樣品在水中經過設定天數的銀離 子釋放濃度,結果可見樣品A 銀離子在所有退火溫度下都具有緩慢的 釋放率,釋放濃度均維持在安全範圍之內。接著將退火前後的所有樣 品粉末和高分子塑料聚乙烯(PE) 以適當比例混成,熱加工形成抗菌壓模,持壓模針對大腸桿菌(E. coli) 及金黃色葡萄球(S. aureus) 菌進行標準抗菌測試,抗菌結果顯示除了退火至1000◦C 的樣品其餘都表現出極優良的抗菌性質。 在未退火前30◦C 的氧化矽鋁奈米微球展現出最適合做為抗菌材料 的性質,優點具有良好化學耐久性,抗菌能力符合高標準,還有潔白 的外觀感受。退火後的樣品雖不具有特別吸引人的抗菌顏色外貌,最 終卻發現銀的熱穩定性變化趨向。這些結果顯示本研究在生醫材料領 域具有前瞻性的發展潛力。

關鍵字

銀奈米 抗菌 退火 氧化鋁矽

並列摘要


In this study, we have successfully prepared an ionic silver(Ag+) uniformly incorporated into amorphous silica/aluminum framework and silver nanoparticles was embedded on its surface by sol-gel process, which introduce controlled Al atoms to play a significant role in overall Silica matrix. It attributed that the premier reason for silver ions uniformly distribute in entity of silica carrier. The interaction between [AlO4]− tetrahedral structure and Ag+ result in uniform Ag+ distribution in matrix by electrostatic force, and then Ag+ embedded Al-O-Si structure(sample A) is revealed. In order to verify the significance of Al atoms, extra control group specimens(sample B) were also prepared by the identical method and condition except for removing procedure of adding Al(NO3)3 · 9H2O as a precursor to ensure the final product without the Al components. The Ag+ embedded Al-O-Si structure was then annealed in O2 atmosphere range from the temperature 250◦C to 1000◦C. The surface composition ratio of silver atoms and monovalent silver ions were changed with annealed condition constantly, which could divide into the three steps transition. Silver nanoparticles reduced on the surface at lower temperature initially. As temperature gradually increased, silver atoms immediately fulfilled ionization requirement with transforming to the ionic state. Furthermore, it might take place melting and desquamation at higher temperature. XPS analysis interpreted more specifically the digital content results of silver atoms and ions on the surface by calculating the area under the deconvolution curve. To give a proof which silver ions definitely existed, Both sample A and B annealed in O2 at 1000◦C were carried out second-stage annealing reached to 600◦C in N2(90%),H2(10%) atmosphere. The results exhibit there were disappeared silver nanoparticles solely rediscovered in sample A. Proving the possibility which the silver ions present. ICP analysis detected the silver ions releasing rate in the water. the consequence show whole sample A slowly release silver ions in the setting time interval, which maintain within safety region.We utilized as-prepared Agembedded on aluminum/silica to hybrid with Polyethylene(PE) by hot working to form the film, which show excellent antibacterial property exclusive of 1000◦C by reason of having the standard antibacterial test against E. coli and S. aureus. The sample A before annealing at 30◦C emerges the most desirable property as an antibacterial material. The advantages possess chemical durability, high standard antibacterial ability and colorless appearance. Thought the samples after annealing do not include appealing color, the evolution of silver thermal stability are eventually found out. These consequences present prospective development in biomaterial.

參考文獻


[1] Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62--69 (1968).
[4] Tan, M. N. & Park, Y. S. Synthesis of stable hollow silica nanospheres. Journal of Industrial and Engineering Chemistry 15, 365 -- 369 (2009).
[5] Deng, Z., Chen, M., Zhou, S., You, B. & Wu, L. A novel method for the fabrication of monodisperse hollow silica spheres. Langmuir 22, 6403-
-6407 (2006).
[6] Chen, M., Wu, L., Zhou, S. & You, B. A method for the fabrication of monodisperse hollow silica spheres. Advanced Materials 18, 801--806 (2006).

延伸閱讀