透過您的圖書館登入
IP:3.17.162.247
  • 學位論文

以垂直震盪器和以含低濃度界面活性劑的水輔助乳化的分散液液微萃取法並搭配氣相層析質譜儀檢測水中的有機磷農藥和酒中的殺菌劑

Determination of organophosphorus pesticides in environmental water samples and fungicides in wine

指導教授 : 黃賢達

摘要


本篇論文的目的在於開發改良新的微萃取方法,利用少量萃取溶劑及簡單的前濃縮步驟,快速萃取自然環境中水樣的有機磷農藥和葡萄酒中的殺菌劑,以達成對環境友善且符合檢驗標準的目標。 有機磷農藥在哺乳類與昆蟲體中為乙醯膽鹼酯酶拮抗劑,會破壞人體中樞神經系統。目前歐盟對飲用水中有機磷農藥訂定單一種殺蟲劑最高劑量為 0.1 μg L-1,而混和種類的殺蟲劑總劑量不可超過 0.5 μg L-1。 殺菌劑主要用於防治由真菌或細菌引起的植物病害。研究顯示,殺真菌劑與動物罹患肝腫瘤機率增加有所關聯。 本研究為了比較不同乳化方式的萃取效果,特別使用由實驗室開發的垂直震盪器,以及開發以含低濃度界面活性劑的水做為分散劑,這兩個方法都可以加速有機相與水樣之間的質傳並在短時間內完成萃取,比起以往使用的固相及液相微萃取,可以節省非常多的時間;而相較於近來快速發展的分散式液液微萃取法,則能避免使用含氯的萃取溶劑和大量分散溶劑。另外,本研究中也比較了超音波震盪以及 Vortex 震盪器的乳化效果,最後發現垂直震盪器和以含低濃度界面活性劑的水做為分散劑都能夠在最短時間內達到最良好的萃取效果。 在使用不同乳化方式輔助分散液液微萃取法並搭配氣相層析質譜儀檢測水樣中的有機磷農藥這篇研究中,以垂直震盪器輔助乳化的方法中,僅使用14 μL 的5-甲基六碳醇,搭配垂直震盪器輔助乳化二分鐘,即可完成萃取,EFs在1004-1917,線性範圍在 0.1 - 100 μg L-1,r2 皆在 0.9958 以上,偵測極限為 0.040 - 0.069 μg L-1,低於歐盟的飲用水標準 ( 0.1 μg L-1),再現性則在 2.0 - 9.7 %,環境樣品測試了河水和湖水以及地下水,絕對回收率皆在50 – 96 %,相對回收率皆在84 – 115 %,相對標準偏差皆在1.3 – 9.2 % ;以含低濃度界面活性劑的水做為分散劑的方法中,僅使用9 μL 的正七碳醇(作為萃取溶劑)與 250 μL含10 mg L-1 triton X-100(分散劑)以微量注射針來回抽取四下進行乳化,再打入水樣中,即可瞬間完成萃取,EFs在874-2157,線性範圍在 0.1 - 100 μg L-1,r2 皆在 0.9958 以上,偵測極限為 0.020 - 0.035 μg L-1,低於歐盟的飲用水標準 ( 0.1 μg L-1),再現性則在 4.1 - 10.0 %,環境樣品測試了河水和湖水以及地下水,絕對回收率皆在34 – 96 %,相對回收率皆在87 – 115 %,相對標準偏差皆在2.0 – 10 %;實驗證明這兩個方法能夠確實地減少溶劑用量,並在短時間內完成前濃縮及萃取,是一個對環境友善、低成本、簡單且快速的偵測方法。 在比較以垂直震盪器和以含低濃度界面活性劑的水輔助乳化的分散液液微萃取法並搭配氣相層析質譜儀檢測葡萄酒中的殺菌劑這篇研究中,以垂直震盪器輔助乳化的方法中,僅使用11 μL 的正八碳醇,搭配垂直震盪器輔助乳化三分鐘,即可完成萃取,EFs在480-1254,線性範圍在 0.05 - 100 μg L-1,r2 皆在 0.9992 以上,偵測極限為 0.007 - 0.025 μg L-1,遠低於歐盟訂定酒中所含殺菌劑的最大容許量,再現性則在 5.4 - 11.8 %,真實樣品測試了紅酒和白酒,絕對回收率皆在31 – 85 %,相對回收率皆在83 – 119 %,相對標準偏差皆在0.5 – 7.5 % ;以含低濃度界面活性劑的水做為分散劑的方法中,僅使用12 μL 的正八碳醇(作為萃取溶劑)與 240 μL含10 mg L-1 triton X-100(分散劑)以微量注射針來回抽取四下進行乳化,再打入水樣中,即可瞬間完成萃取,EFs在414-1313,線性範圍在 0.05 - 100 μg L-1,r2 皆在0.9978 以上,偵測極限為 0.013 - 0.026 μg L-1,遠低於歐盟訂定酒中所含殺菌劑的最大容許量,再現性則在4.3 - 11.2 %,真實樣品測試了紅酒和白酒,絕對回收率皆在30 – 85 %,相對回收率皆在81 – 120 %,相對標準偏差皆在1.0 – 8.9 %;實驗證明這兩個方法能夠實際應用到食品中,而且確實地減少溶劑用量,並在短時間內完成前濃縮及萃取,是一個對環境友善、低成本、簡單且快速的偵測方法。

並列摘要


A new up-and-down shaker-assisted dispersive liquid– liquid microextraction (UDSA-DLLME) and water with low concentration of surfactant in dispersed solvent-assisted emulsion dispersive liquid–liquid microextraction (WLSEME) coupled with gas chromatography mass spectrometer (GC-MS) was developed for the analysis of the thirteen organophosphorus pesticides (OOPs) in aqueous samples. The method of UDSA-DLLME used only 14 μL of 5-methyl-1-hexanol as the extraction solvent. With the use of an up-and-down shaker, the emulsification of aqueous samples was formed homogeneously and quickly. The extraction of OOPs were completed in 2 min. After optimization, the linear range of the method was 0.1–100 μg L−1, and the coefficient of determination (r2) was greater than 0.9958. The limits of detection (LODs) ranged from 0.040 to 0.069 μg L−1, and the relative standard deviation was from 2.0 to 9.7 %. Real samples of river water, lake water, and underground water had absolute recoveries from 50 to 96 % and relative recoveries from 84 to 115 %. On the method of WLSEME, a microsyringe is used to withdrew and discharge 9 μL of the extraction solvent (1- heptanol) and 250 μL of water as the dispersed solvent (containing 10 mg L−1, Triton X - 100) 4 times within 10 s to form a cloudy emulsified solution in the syringe. This is then injected into an 5 mL aqueous sample spiked with all above OOPs. The total extraction time was about 0.5 min. After optimization, the linear range of the method was 0.05–100 μg L−1, and the coefficient of determination (r2) was greater than 0.9958. The limits of detection (LODs) ranged from 0.020 to 0.035 μg L−1, and the relative standard deviation was from 4.1 to 10.0 %. Real samples of river water, lake water, and underground water had absolute recoveries from 34 to 96 % and relative recoveries from 87 to 115%. Other emulsification methods such as vortex-assisted, and manual shaking-enhanced ultrasound-assisted methods were also compared with the proposed UDSA-DLLME and WLSEME. The results revealed that UDSA-DLLME and WLSEME performed with higher extraction efficiency and precision compared with the other methods and they provided an alternative to solve the common problems in DLLME and other assisted emulsification methods such as vortex, ultrasound, and manual shaking/ultrasound assisted, including degradation of analyte , increased solubility of the analytes and extraction solvents in aqueous solution, the use of toxic extraction solvents and large volumes of dispersed solvents.

參考文獻


(2) Arthur, C. L.; Pawliszyn, J. Analytical Chemistry 1990, 62, 2145-2148.
(7) Pedersen-Bjergaard, S.; Rasmussen, K. E. Analytical Chemistry 1999, 71, 2650-2656.
(16) Robina, F.; Feng-kai, L.; Shaukat, S. F.; Jian-jun, H. Journal of Environmental Sciences 2003, 15, 710-714.
(23) Leong, M. I.; Huang, S. D. Journal of Chromatography. A 2008, 1211, 8-12.
(24) Chang, C. C.; Wei, S. Y.; Huang, S. D. Journal of Separation Science 2011, 34, 837-843.

延伸閱讀