透過您的圖書館登入
IP:3.128.78.30
  • 學位論文

運用雷射於快速模具表面加熱之基礎研究

A BASIC UNDERSTANDING OF RAPID MOLD SURFACE HEATING VIA LASER ENERGY

指導教授 : 陳夏宗 黄培嘉
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近年來,表面加熱方法的研究與發展不斷地創新,將表面溫度提高至接近或大於高分子固化溫度有助於得到所需的微結構成品,此方法在射出成型學術與工業界中已達成一致的共識。本研究利用雷射加熱表面的實驗以及模擬中,研究中所設計的2種尺寸模塊與一般射出成型成型品的面積大小相近。實驗中將功率100W 的CO2雷射射向三種不同表面粗糙度的模塊表面,透過熱影像攝影機及接觸式溫度感測器測量可以觀察並記錄溫度的提升。研究中採用了1mm到20mm之五種尺寸雷射光點直徑大小,各直徑自1秒到5分鐘的加熱時間中,於加熱表面下1mm處所測量的溫度由23⁰C升高至超過100⁰C。模擬中使用直徑3 mm的雷射光點射向30mm厚的試驗,經測量後樣本共吸收了13.2W的能量並將表面溫度提高至180⁰C。透過本研究,目前已提出符合更實際加熱方法的設計,此設計也同時兼具實用與經濟的特性,可視為對模具表面快速加熱領域未來研究的重大突破。

並列摘要


As the research and development of surface heating methods have increased in the recent years, the consensus has been reached amongst the injection molding community that an elevated mold surface temperature near or greater than the polymer solidification temperature provides acceptable replication of the desired micro-structured parts. The laser heating experimental work and simulation development carried out includes two sample sizes similar to those used in injection molding. A 100W CO2 laser incident on three samples of different surface roughnesses has shown to have elevated temperatures via thermal cameral data and thermocouple measurements. Among five different laser spot sizes varying from 1 mm to 20 mm in diameter, heating rates from 1 second to 5 minutes have shown temperatures rises from 23⁰C to often over 100⁰C, when measuring 1 mm below the heated surface. A particular case with a laser spot size of 3 mm in diameter incident on a 30 mm thick sample has absorbed 13.2W of laser energy and yielded a surface temperature over 180⁰C through simulation. A new design has been proposed to allow for a more practical heating method that is feasible, economical, and deemed the next step in future work for laser heating in the rapid mold surface heating community.

參考文獻


2 Arpaci, V.S. Conduction Heat Transfer, Addison-Wesley: Reading, MA, 1966.
4 Bendada, A., Simard, Y., Lamontagne, M., Effect of shrinkage and process parameters on the monitoring of bulk and surface stream temperatures in injection molding via the infrared waveguide method, Polymer Engineering and Science 44:5, 2004.
6 Chang1, P.C., Hwang, S.J., Simulation of infrared surface heating for injection molding, International Journal of Heat and Mass Transfer 49, 3846-3854, 2006.
7 Chang2, P.C., Hwang, S.J., Experimental investigation of infrared rapid surface heating for injection molding, Journal of Applied Polymer Science 102, 3704-3713,2006.
8Chen1, M., Donggang, Y., Kim, B., Eliminating flow induced birefringence and minimizing thermally induced residual stresses in injection molded parts, Polymer-Plastics Technology and Engineering 40:4, 491-503, 2010.

延伸閱讀