透過您的圖書館登入
IP:3.17.74.227
  • 學位論文

以電漿輔助化學氣相沉積法製備超疏水薄膜及形成機制之研究

Fabrication of Super-Hydrophobic Films by PECVD and Investigations on its Forming Mechanism

指導教授 : 魏大欽

摘要


本研究利用六甲基二矽氧烷(Hexamethyldisiloxane)為鍍膜前驅物於圓管式電漿反應器中沉積矽氧烷薄膜,對基材擺放位置之不同,探討不同操作壓力、沉積時間及氣體流量配比與對矽氧烷薄膜疏水性質之影響,並利用接觸角量測儀、SEM、AFM、FTIR、XPS等儀器分析沉積膜材之表面及化學組成的變化。 研究發現,經電漿鍍膜後的聚丙烯(PP)基材在反應器的進氣口端至進入電漿區前之沉積膜為平坦的膜面,電漿區中的膜材表面則具有粗糙的結構,而遠離電漿區後靠近幫浦端的膜面為稀疏的粉體堆積。經SEM分析粗糙的膜材表面後可發現膜材具緻密的球形結構,且利用FE-SEM剖面觀察有沉積膜與粉體堆積的情形,並以水接觸角量測此膜材具有超疏水化(~150°)之性質,從FTIR發現膜材表面亦有大量的Si-O-Si與Si-CH3鍵結,因此推斷此鍵結之形成與膜材表面上粗糙結構對超疏水化之特性有顯著關係。 利用AFM分析發現超疏水化膜面的均方根粗糙度可達200nm以上,並用Cassie-Baxter模型計算表面固體分率(Xs)約為0.03,顯示此粗糙的膜面可有效降低水滴與固體表面接觸的面積,且從動態接觸角分析則有具低遲滯現象,因此在電漿區中的沉積膜材具備良好的自潔效果。 不同的操作壓力下對超疏水化之膜材的表面型態亦有差異性,由SEM觀察發現高壓比低壓沉積膜之粉體堆積來的明顯,影響原因為當操作壓力隨著沉積時間增長而有整體上升之趨勢,當到達臨界壓力時,長膜機制會轉為長膜且長粉體機制,推測臨界壓力約在1100~1400mTorr左右。 最後於PET及矽晶片上沉積超疏水膜,以SEM觀察得知,PET之沉積膜與PP上的沉積膜具有相類似之緻密球形結構,而在相同位置下之矽晶片的沉積膜則為平坦的膜面,在後輝光區的矽晶片才有高粗糙度的沉積膜出現。

並列摘要


In this study, super-hydrophobic surfaces were prepared by plasma depositon using Hexamethyldisiloxane precursors. The surface characteristics were investigated by means of contact angle measurement, field-emission scanning electron microscopy, atomic force microscopy, fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. The deposited films on substrates were flat near gas inlet positions. The film deposited in plasma region was rough, and the films deposited away from the plasma region were particles. FE-SEM analysis of rough surface indicated that the films exhibited dense spherical structure and that deposited films and thin particles appeared simultaneously. Moreover, the film's water contact angle was greater than 150°, which is a characteristic of super-hydrophobicity. The film were shown to possess Si-O-Si and Si-CH3 bondings from FTIR analysis. AFM analysis indicated that roughness of the super-hydrophobic film can reach above 200nm, and through Cassie-Baxter equation, surface solid fraction was approximately 0.03, and possessed the property of low contact angle hysteresis. Starting pressures also affects the surface morphology of super-hydrophobic films. It was observed that deposited film consists of more particles under higher pressure conditions. When it reached the critical point, the mechanism of growth films would be transformed into that of growth films and particles. It was also observed that similar to the depositied films on PP, the deposited films on PET had a dense spherical structure. Nonetheless, the deposited films on silicon wafer under the same position were flat.

參考文獻


[1] 楊士賢, "以脈衝式電漿輔助化學氣相沉積法製備氟化非晶碳膜之研究," 私立中原大學碩士論文, 2005.
[24] 林佩穎, "以電漿放射光譜技術探討電漿表面改質高分子膜之研究," 私立中原大學碩士論文, 2006.
[27] 古奕凡, "聚丙烯膜材表面超疏水化電漿改質技術及形成機制之研究," 私立中原大學碩士論文, 2009.
[2] B. Chapman, "Glow Discharge Process," John Wiley & Sons, Canada, 1980.
[4] 郭恆誠, "以電漿輔助化學氣相沉積法製備超疏水及疏油化薄膜," 私立中原大學碩士論文, 2008.

被引用紀錄


陳慶瑜(2017)。以微波電漿製備超疏水及疏油薄膜於平坦基材之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201700480
陳朝陽(2015)。電漿輔助化學氣相沉積法製備疏水疏油薄膜之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201500661
徐郁璘(2013)。電漿輔助化學氣相沉積法製備有機矽氧烷氣體分離膜之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201300765
陳榮俊(2012)。四氟乙烷電漿沉積氟碳複合結構薄膜製程之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201200630

延伸閱讀