透過您的圖書館登入
IP:3.147.54.242
  • 學位論文

考慮溫度影響的鋰離子電池循環壽命敏感性參數和開路電壓同時估測

Simultaneous Estimation of internal resistance and open-circuit voltage of lithium-ion batteries with Temperature Compensation

指導教授 : 施武陽

摘要


電池電量(State of charge,SoC)和電池健康度(State of health,SoH)分别定义电池的充电量和额定容量损失。为了确定这两个参数,估測电池的开路电压(Open-circuit voltage,OCV)和内阻是必不可少的。这项研究的动机是开发一个在线,简单,无培训,易于实施的方案,能够估算这些参数,特别是锂离子电池。基于等效电路模型(Equivalent circuit Model,ECM),可以将电池的电性能表达为一維空间。此外,不确定的模型参数可以应用自适应控制方法被整理成近似线性狀態。该算法基于李雅普諾夫稳定性标准。 可以精确提取開路電壓和内阻而不受系统输入信号的限制,如持续激励(persistent excitation,PE),增强了电力系统的适用性。同时,采用鋰離子电池的一維电化学集合热模型来建立电池的温度和物理参数之间的关系。在第一阶段,使用自适应控制观测器估计这些参数的结果是通过应用1-D电化学块热模型提出的。 本計畫目的是導入1-D 電化學模擬溫度方法,針對鋰離子電池,修正循環壽命或稱為老化狀況之敏感性參數建立估測手法為主軸,息知循環壽命的變化與電極材料、操作溫度與放電深度等因子相關性較大,常以一階或是二階模擬電路模型的內電阻值來代表,由目前諸多研究上,可以發現在電池壽命的估測上,缺乏能考量電池操作環境下快速得知電池壽命之整合性方法,而電池壽命的精確估測,將扮演該電能與電力系統間最為關鍵的角色。因此,本研究規劃,導入1-D 電化學模擬溫度方法修正線上電池循環壽命敏感性參數估測方法,強化適應性控制方法的正確性。 結果說明了結合電化學熱模型的電池模擬程式可以較為準確的估測出鋰離子電池的開路電壓和內阻,還能模擬現實情況中的電池衰老情況和環境溫度改變和電池溫度變化產生的電池參數變動。

並列摘要


State-of-charge (SoC) and state-of-health (SoH) define the amount of charge and rated capacity loss of a battery, respectively. In order to determine these two parameters, open-circuit voltage(OCV) and internal resistance of battery are indispensable. The motivation of this study is to develop an online, simple, training-free, and easily implementable scheme that is capable of estimating such parameters, particularly for the lithium-ion battery. Based on an equivalent circuit model (ECM), the electrical performance of a battery can be formulated into state-space representation. Also, underdetermined model parameters can be arranged to appear linearly so that an adaptive control approach can be applied. The algorithm is based on the Lyapunov-stability criteria. OCV and internal resistance can be extracted exactly without limitations of a system input signal, such as persistent excitation(PE), enhancing the applicability for power systems. Meanwhile, 1-D electrochemical lump thermal model of battery is employed to establish the relationship between temperature, and physical parameters of battery. In the first phase, results of using adaptive control observer to estimate these parameters is presented by applying 1-D electrochemical lump thermal model.

參考文獻


2. Chung, S.-Y., J.T. Bloking, and Y.-M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes. Nature materials, 2002. 1(2): p. 123-128.
3. Burba, C.M. and R. Frech, Local structure in the Li-ion battery cathode material Li x (Mn y Fe 1− y) PO 4 for 0< x≤ 1 and y= 0.0, 0.5 and 1.0. Journal of Power Sources, 2007. 172(2): p. 870-876.
4. Feng, F., et al., Online Estimation of Model Parameters and State of Charge of LiFePO4 Batteries Using a Novel Open-Circuit Voltage at Various Ambient Temperatures. Energies, 2015. 8(4): p. 2950.
5. Chiang, Y.-H., W.-Y. Sean, and J.-C. Ke, Online estimation of internal resistance and open-circuit voltage of lithium-ion batteries in electric vehicles. Journal of power sources, 2011. 196(8): p. 3921.
7. Liaw, B.Y., et al., Modeling capacity fade in lithium-ion cells. Journal of Power Sources, 2005. 140(1): p. 157-161.

延伸閱讀