透過您的圖書館登入
IP:3.142.166.55
  • 學位論文

活化後增能作用對鐵餅投擲技術之分析

Technical Analysis of Discus Throwing In Post Activation Potentiation

指導教授 : 黃長福
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


背景:若排除風、經緯度等環境因素,影響鐵餅投擲距離的就是選手自身的投擲技術與個人身體素質,而男性鐵餅運動員要在短時間內將最大力量釋放的投擲特性,因此爆發力的增進可獲取更理想的投擲成績。先前已有研究證實誘發活化後增能作用 (Post Activation Potentiation, PAP) 後對於爆發力增長有所幫助,其中鐵餅選手肌肉力量大、II型肌纖維比例高的有利條件中也有助於PAP的誘發及發揮更好的效果,顯示該作用能給予鐵餅選手的增益效果優良。目的:本研究目的為利用連續三次最大垂直反向跳躍誘發PAP對鐵餅投擲運動員投擲成績之影響,並進一步分析鐵餅旋轉技術在誘發PAP前後各階段運動學指標之差異。方法:招募7名右手投擲,深蹲重量達自身體重1.75倍,且過去6個月內無關節、肌肉損傷之情形可順利進行投擲8次 (含試擲2次) 的運動員為對象,並將運動員隨機分為兩組,組別1為無介入投前三擲,後三擲PAP介入;組別2為前三擲PAP介入,後三擲無介入的鐵餅投擲,最終介入PAP與無介入PAP各取一擲最佳成績進行分析比較,兩組皆於前3次投擲後休息20分鐘進行第4次投擲,投擲間休為8分鐘。實驗器材使用一台高速攝影機採樣率250HZ (投擲方向右方),以及Xsens Link全身慣性傳感器採樣率為240 Hz同步拍攝收集參與者鐵餅投擲時的生物力學參數。結果:連續三次最大垂直反向跳躍誘發PAP後,對成績無顯著差異,僅在最大預擺瞬間左側髖關節屈曲角度、右腳著地瞬間右側膝關節屈曲角度、左腳著地瞬間右側膝關節屈曲角度、最大預擺瞬間左側膝關節屈曲角度、左腳離地瞬間左側膝關節外展角度、最大預擺瞬間左側膝關節內旋角度、左腳著地瞬間右側踝關節背屈角度顯著大於一般投擲,而右腳著地瞬間左側膝關節內旋角度顯著小於一般投擲。結論: 本研究透過連續三次垂直反向跳躍誘發PAP後1分鐘,對鐵餅運動員投擲成績未有顯著差異,僅改變下肢運動學參數。此外,將慣性傳感器應用於鐵餅投擲中,發現對於鐵餅旋轉階段腳離地與腳落地之瞬間,以及鐵餅離手瞬間皆可透過IMU直接進行判讀,可避免使用其他設備,降低實驗硬體需求。

並列摘要


Background: If environmental factors such as wind, latitude and longitude are excluded, the throwing distance of the discus will be affected by the throwing technique and personal fitness of the player. Male discus players need to release the maximum force in a short period of time. Therefore, the improvement of explosive power can improve the throwing performance. Previous studies have confirmed that the induction of post-activation potentiation (PAP) is helpful for the increase of explosive power. Among them, the favorable conditions of strong muscle strength and high proportion of type II muscle fibers in discus athletes also help PAP to induce and exert more strength, that this effect can give a good buff to discus thrower. Purpose:The purpose of this study was to use the effect of three consecutive maximal vertical jumps to induce PAP on the throwing performance of discus throwers, and to further analyze the differences in the kinematic indicators of discus rotation at each event before and after induction of PAP. Method:Recruit 7 right-handed throwing athletes with a squat weight of 1.75 times their own body weight, and who can successfully perform 8 throws (including 2 trial throws) without joint or muscle damage in the past 6 months, and randomly select the athletes. Divided into two groups, group 1 is the first three throws without intervention and PAP intervention after three throws; group 2 is discus throwing with the first three throws PAP intervention and the last three throws without intervention, and the final intervention PAP and no intervention PAP are taken respectively. The best results of one throw were analyzed and compared. Both groups took a 20-minute rest after the first three throws and then performed the fourth throw, with an 8-minute rest between throws. The experimental equipment uses a high-speed camera with a sampling rate of 250 Hz (to the right of the throwing direction) and an Xsens Link whole-body inertial sensor with a sampling rate of 240 Hz to capture the biomechanical parameters of the participants during discus throwing. Result:After three consecutive maximum vertical reverse jumps induced PAP, there was no significant difference in throwing distance, only the flexion angle of the left hip joint at the moment of the maximum pre-swing, the flexion angle of the right knee joint at the moment of the landing of the right foot, and the flexion angle of the right knee joint at the moment of the landing of the left foot. , The flexion angle of the left knee joint at the moment of the maximum pre-swing, the abduction angle of the left knee joint at the moment when the left foot leaves the ground, the internal rotation angle of the left knee joint at the moment of the maximum pre-swing moment, and the dorsiflexion angle of the right ankle joint at the moment of the left foot landing were significantly greater than those of general throwing. The internal rotation angle of the left knee joint at the moment when the right foot lands on the ground is significantly smaller than that of general throwing. Conclusion:In this study, 1 minute after induction of PAP by three consecutive vertical reverse jumps, there was no significant difference in the throwing distance of discus athletes, only the kinematic parameters of the lower limbs were changed. In addition, the inertial sensor is applied to discus throwing, and it is found that the moment when the foot leaves the ground and the foot falls in the discus rotation stage, as well as the moment when the discus release the hand, can be directly interpreted through the IMU, which can avoid the use of other equipment and reduce the experimental hardware requirements.

參考文獻


Abd Ei Monsef, R., Salem, M., Ei Shaeer, O., Abd Ei Baky, A., Abd Ei Hammed, M., Abd Ei Gawad, M., & Ghaz, T. (2012). Biomechanical analysis of top discus throws performance in Egypt. Theories & Applications, 2(1), 21-28.
Andreas, V. M. (2017). The functions of extremities in discus throwing. Track Coach Winter, 218, 6951-6961.
Bartlett, R.M. (1992). The biomechanics of the discus throw: A review. Journal of Sports Sciences, 10(5), 467-510.
Billeter, R., Jostarndt-Fogen, K., Gunthor, W., Hoppeler, H. (2003). Fiber type characteristics and myosin light chain expression in a world champion shot putter. International Journal of Sports Medicine, 24(3), 203-207.
Blair, S., Duthie, G., Robertson, S., Hopkins, W., & Ball, K. (2018). Concurrent validation of an inertial measurement system to quantify kicking biomechanics in four football codes. Journal of Biomechanics, 73, 24-32.

延伸閱讀