透過您的圖書館登入
IP:3.139.61.71
  • 學位論文

CO2雷射加工電源控制之應用

The Applications of Power Control for CO2 Laser Cutting Machine

指導教授 : 李廣齊
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


傳統的雷射加工機只能於二維工作平面做固定深度的加工,所以無法執行2.5D的加工。本論文針對雷射電源控制器之研究,採用數位脈波調變的架構來設計雷射電源之功率控制器。以視覺檢測應用於雷射切割機在進給速率、功率之切割深度特性評估,其次,再採用適應類神經模糊推論系統(ANFIS)法則,針對雷射加工機制建模其切削深度與進給速率、雷射電源功率,以克服系統之時變與非線性的特性,並分析其相互間的影響。在則,本論文使用ARM 核心之嵌入式系統的控制器,在雷射加工機台上,發展一具加工深度與雷射電源建模結果的控制器,以驗證建模結果的可行性。最後,本文針對雷射加工機撰寫其2.5D 加工相關之指令,執行雷射加工電源的PWM 控制,將灰階化影像使用2.5D加工的方式,將明暗之色彩對應到淺深的加工,逹到2.5D 雷射加工的目的。

並列摘要


The traditional laser cutting machine only work in a single plane with a fixed depth of cut and cannot be used in 2.5D. This research project is developed a laser power controller with the use of digital pulse width modulation (DPWM) for a laser cutting machine for 2.5D cutting. The behavior pattern of the cutting depth against feed rate and power of the laser were examined initially. Then the adaptive network based fuzzy inference system (ANFIS) is used to model the relationship between the parameters. The power of the laser can be estimated by using this model to get the required depth of cut. ARM architecture based embedded system is used to generate DPWM signals to control the power of the laser and hence the depth of cut. This project also implemented an interpreter to get the 2.5D facility with use of existing instruction of the laser machine. This method is achieved the expected level of 2.5D laser cutting with the use of DPWM method.

並列關鍵字

Laser cutting ANFIS embedded system PWM control

參考文獻


[24]Min-Yen Yeh, Chin-Cheng Lee, Shan-Cheng Pan,Zong-Liang Chen, Chong-Min Wang and Rui-Tang Lee“Integrated System Design of PWM Application on Electrical Vehicle Driving and Battery Charger”, Kaohsiung County 82445,Taiwan, pp 57.
[4]L.A. Zadeh, “Fuzzy sets,” Information and Control, Vol. 8, pp. 338 -353, 1965.
[5]C.T. Lin and C.S.G. Lee, “Neural-network-base fuzzy logic control and decision system,” IEEE Trans. Computers, Vol. C. 40 , no. 12 , pp. 1320-1336, Dec. 1991.
[6]C.T. Lin and C.S.G. Lee, “Real-time supervised structure/ parameter learning for Fuzzy Neural Network,” in Proc. IEEE Int. Conf. Fuzzy Syst.San Diego. C.A., pp. 1283-1290, Mar. 1992.
[7]J.S. Roger Jang, “Self-Learning Fuzzy Controllers Based on Temporal Back Propagation,” IEEE Transaction On Neural Networks, Vol. 3, No. 5, pp. 714-723, Sept. 1992

被引用紀錄


鄭又仁(2011)。向量字型雕刻印章之研究〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-2601201110265500
葉文富(2012)。雷射照相裝置之研究〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-1707201212410500
施念宗(2015)。遠端雷射影像雕刻之研究〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-0909201413450800

延伸閱讀