透過您的圖書館登入
IP:18.224.63.87
  • 學位論文

利用共焦顯微系統與反褶積理論對螢光奈米樣品進行圖像回解與分析

Study of restoring the fluorescent nanostructure by confocal microscope system and deconvolution theory

指導教授 : 吳光雄

摘要


共焦顯微術具備了一般光學顯微鏡非侵入式的優點,並且具有光學切片的能力、高空間解析度、可配合螢光顯微技術共同運作的獨特優勢。此項技術已廣泛被應用在醫學、生物、以及材料等領域的觀察及度量。但光學顯微術受到了光波繞射的影響,影像的細微結構所產生的訊號在成像過程中損失了高頻部分,因而難以降低橫向解析率。 本研究的研發重點在於將共焦顯微術發展為不受繞射極限限制的顯微系統。為了達成此項技術,將架設一套共焦顯微系統並結合反褶積顯微術與空間截止頻率等理論,對螢光奈米結構進行影像回解。以本系統量測出比繞射限制還微小的影像,並對實驗結果進行分析討論。

並列摘要


Confocal microscopy has advantage of non-invasive nature of conventional microscope. It has powerful abilities of optical biopsy and high spatial resolution, it also can combine with fluorescence microscopy to get more useful information. Now, it has been applied widely in field of biomedical inspection and material detection etc. Optical microscopes receive the effect of diffraction of light wave. It leads to loss the high frequency at the imaging process, and is difficult to reduce the lateral resolution. In this study, to make the confocal microscopy become the microscopy that is not subject to the optical diffraction limit. The confocal microscope system is designed and set up, and combined the theories of deconvolution microscope and spatial cut-off frequency to restore the image of the fluorescence nanostructure. Using the system measured the image that is tinier than diffraction limit, and discussed the result.

參考文獻


[2] C. J. R. Sheppard, and D. M. Shotton, “Confocal Laser Scanning Microscopy”, BIOS Scientific Publishers, United States (1997).
[3] P. Davidovits, and M. D. Egger, Nature 223, 831 (1969).
[15] J. R. Lakowicz, “Principles of Fluorescence Spectroscopy”, Plenum Press,
系統網頁上的「論文目次欄位」的頁碼與「PDF檔內目次」的頁碼不一致,請更新系統網頁的「論文目次欄位」,謝謝
(EX:3-3不在pdf檔論文目次內)

延伸閱讀