透過您的圖書館登入
IP:18.116.85.72
  • 學位論文

多規格互補式金氧半射頻 功率放大器電路設計

Multi-Standard CMOS RF Power Amplifier Circuit Design

指導教授 : 陳少傑

摘要


隨著無線通訊系統急速的發展,越來越多無線通訊規格在我們生活中被使用著。因此將多規格無線通訊系統合併為單一的無線收發器是一項重要的研究課題。其中的關鍵技術為一個寬頻段的前端電路設計。本文著重於設計一個寬頻段多規格的射頻功率放大器電路應用於802.11b、802.11g/n所使用之2.45GHz ISM頻帶,UWB-WiMAX 802.16a所使用之3.5G頻帶、IEEE 802.11a 所使用之5GHz U-NII頻帶等規格。我們所提出的寬頻段多規格功率放大器適用於直接降頻收發機架構,使用硬體共用的概念達到減少面積和降低功率消耗的優點。我們所提出的電路使用TSMC CMOS 0.18 微米製程實現,整體面積為0.391平方毫米,功率消耗為805毫瓦,電源電壓為3.3伏特。我們所提出的寬頻段功率放大器可適用於2.45GHz、3.5GHz和5GHz 等頻段,為一個三級的放大器,其中第一跟第二級放大器採用我們所提出的雙迴路迴授技術可達到寬頻及阻抗匹配的特性,達到2~6GHz寬頻及輸入端跟輸出端阻抗匹配50 ohm,使其方便跟第三級的功率放大器輸入端達到極間匹配的效果,第三級放大器具有功率放大的效能。

關鍵字

多規格

並列摘要


As the demand of wireless system increases rapidly, more and more wireless communication standards are used simultaneously in our lives. Therefore, a multi-standard communication system that can be integrated into a single wireless transceiver becomes an important research issue. The dominant technique to achieve highly-integrated transmitter architecture is the wideband power amplifier circuit design. This Thesis is focused on a broadband and multi-standard RF power amplifier for 2.45GHz ISM 802.11b, 802.11g/n, Bluetooth, 3.5G UWB-WiMAX 802.16a, and 5GHz U-NII IEEE 802.11a applications. The proposed broadband and multi-standard RF power amplifier adopts a direct-conversion architecture, thus reducing chip area and power consumption by hardware sharing. The post-simulation results show that the broadband power amplifier occupies an area of 0.391 mm2, dissipating 805mW at high-gain mode with a 3.3V power supply in TSMC CMOS 0.18μm process. The broadband power amplifier configured in 2.45G, 3.5G, and 5GHz bands is composed of three stages. The first-stage and second-stage amplifiers are based on our proposed dual-loop feedback technique [8][9][10] to reach broadband and impedance matching; they have a wideband input/output 50 ohm matching from 2GHz to 6GHz to achieve inter-stage matching with the third-stage amplifier. The third-stage amplifier is for power amplification.

並列關鍵字

Multi-Standard

參考文獻


[1] M. Zargari, M. Terrovitis, S. H. Jen, B. J. Kaczynski, L. MeeLan, M. P. Mack, S.S. Mehta, S. Mendis, K. Onodera, H. Samavati, W. W. Si, K. Singh, A. Tabatabaei, D. Weber, D. K. Su, and B. A. Wooley, “A Single-Chip Dual-Band Tri-Mode CMOS Transceiver for IEEE 802.11a/b/g Wireless LAN,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2239-2249, Dec. 2004.
[2] K. Vavelidis, I. Vassiliou, T. Georgantas, A. Yamanaka, S. Kavadias, G. Kamoulakos, C. Kapnistis, Y. Kokolakis, A. Kyranas, P. Merakos, I. Bouras, S. Bouras, S. Plevridis, and N. Haralabidis, “A Dual-Band 5.15–5.35-GHz, 2.4–2.5-GHz 0.18-μm CMOS Transceiver for 802.11a/b/g Wireless LAN,” IEEE Journal of Solid-State Circuits, vol. 39, no. 7, pp. 1180-1184, July 2004.
[3] S. C. Cripps, RF Power Amplifiers for Wireless Communications, Artech House Publishers, May 2006.
[5] C. T. Fu, C. N. Kuo, and S. S. Taylor, “Low-Noise Amplifier Design with Dual Reactive Feedback for Broadband Simultaneous Noise and Impedance Matching,” IEEE Trans. Microwave Theory and Techniques, vol. 58, no. 4, pp. 795-806, Apr. 2010.
[6] Q. T. Lai, and J. F. Mao, “A 0.5–11 GHz CMOS Low Noise Amplifier Using Dual-Channel Shunt Technique,” IEEE Microwave and Wireless Components Letters, vol. 20, no. 5, pp. 280-282, May 2010.

延伸閱讀