透過您的圖書館登入
IP:18.118.12.101
  • 學位論文

無鉛銲料與(鎳-釩)基材間之界面反應及錫-鎳-釩相平衡

Interfacial reactions between Pb-free solders and the (Ni-V) substrate and Sn-Ni-V phase equilibria studies

指導教授 : 陳信文
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文之研究主題為Ni-V合金與無鉛銲料(Pb-free solder)之界面反應及Sn-Ni-V三元系統之相平衡。覆晶構裝(flip chip packaging)是目前最先進之電子構裝技術,Ni-V合金是覆晶構裝最常用之擴散阻障層材料。由於環保意識的抬頭,以無鉛銲料取代錫鉛銲料為大勢所趨。因此,Ni-V合金與無鉛銲料之接合將是電子產品中最常見之銲點(solder joints)結構。 銲點之界面反應與產品可靠度息息相關。本論文探討Ni-V合金與各種無鉛銲料之界面反應,包括Sn、共晶Sn-Cu(Sn-0.7wt.%Cu)與共晶Sn-Ag(Sn-3.5wt.%Ag)。目前文獻上普遍探討的是Ni與無鉛銲料之界面反應,Ni-V合金與無鉛銲料之界面反應的研究十分稀少。雖然Ni-V合金中V含量只有7wt.%,但這並不意味其對界面反應沒有影響。本論文將針對無鉛銲料/Ni-V之界面反應作深入探討。此外,在電子元件中,銲點承受很大之電流密度,電遷移效應不可忽略,故本論文也針對電遷移效應對界面反應之影響作探討。而由於相平衡資訊為探討界面反應所不可缺少,本論文之研究範疇也涵概Sn-Ni-V三元系統之相平衡。 相平衡實驗結果顯示,在250oC下,靠近富錫區之Sn-Ni-V相平衡結果為L(Sn)+Ni3Sn4+V2Sn3三相共存。Ni3Sn4相與V2Sn3相對第三元素幾乎沒有溶解度,L(Sn)相對Ni與V也幾乎沒有溶解度,也沒有形成三元相。V2Sn3相之組成為Sn-34at.%V,與CuMg2之結構相符,應該改寫成VSn2。 界面反應實驗結果顯示,無鉛銲料/Ni-V之界面反應與無鉛銲料/Ni截然不同。當V的添加量為5wt.%以上時,無鉛銲料/Ni-V界面會生成一層Sn-Ni-V之三元相 (T相),此三元相並非熱力學穩定相,而是在特定條件下,藉由反應生成之介穩定相,其結構為介於非結晶與多晶之間。在固/固反應中,會生成T/Ni3Sn4/T/Ni3Sn4之罕見生成相排列,為兼具「固態非結晶化」(solid state amorphization) 與「生成相交錯排列」(alternating) 雙重特殊性之反應。在液/固反應中,三元相之存在,導致其他生成相,如Ni3Sn4相,剝落至熔融銲料中,並使原來在無鉛銲料/Ni系統中就會剝落的生成相,如Cu6Sn5相,剝落的情況加劇。 500A/cm2電流密度之電流對Sn/Ni-V界面反應之影響與其對Sn/Ni之影響相同,生成相種類沒有改變,但反應速率有改變。在電子流與Sn原子擴散同向之界面,反應速率變快。在電子流與Sn原子擴散反向之界面,反應速率變慢。此結果符合動量轉移理論。 覆晶構裝真正使用之擴散阻障層材料為Ni-V,並非純Ni。既然無鉛銲料/Ni-V之界面反應與無鉛銲料/Ni不同,覆晶構裝產品之可靠度評估必須依據無鉛銲料/Ni-V之界面反應,而非無鉛銲料/Ni之界面反應。

關鍵字

界面反應 鎳-釩 無鉛銲料

並列摘要


Ni-V alloys are frequently used as diffusion barrier materials in the electronic products. As a result, solder/Ni-V joints are often encountered in electronic products. Since Sn is the primary element of most of the electronic solders, Sn-Ni-V is an important ternary material system. However, its phase equilibria information is not available. Interfacial reactions are crucial for the reliabilities of the solder joints. There have been intensive investigations about solders/Ni interfacial reactions, but the interfacial reactions between solders and Ni-V substrates are seldom examined. This study investigates the phase equilibria of the Sn-Ni-V ternary system and the interfacial reactions between solders and the Ni-V substrates. The solders include pure Sn, eutectic Sn-Cu (Sn-0.7wt.%Cu) and eutectic Sn-Ag (Sn-3.5wt.%Ag) solders. The electromigration effect upon solders/Ni-V interfacial reactions is also examined in this study. Phase equilibria of the Sn-Ni-V system at 250oC were determined both by experimental determination and calculation with CALPHAD method. No ternary equilibrium phase is observed. At the Sn-rich corner, it is a L(Sn)+Ni3Sn4+VSn2(V2Sn3) three-phase region. The ternary elemental solubilities of Ni3Sn4 phase and VSn2(V2Sn3) phase are negligible, and those of both Ni and V in the liquid phase are also very low. The composition of VSn2(V2Sn3) phase is Sn-34at.%V, which is consistent to the structural prototype of CuMg2, and should be accordingly renamed as VSn2. The interfacial reactions in the solders/Ni-V couples are different from those of solders/Ni. When the V addition is higher than 5wt.%, a ternary meta-stable phase (T phase) is formed. It is an amorphous phase mixing with Ni3Sn4 fine grains. In the solid/solid reactions, unusual T/Ni3Sn4/T/Ni3Sn4 reaction phases were observed in the solders/Ni-V couples. It has two features: solid state amorphization and alternating reaction phases. In liquid/solid reactions, T phase formation makes the reaction phase detachment earlier in comparison with that of Ni substrate. Since Ni-V alloys are the commercial barrier layer materials practically used, and the solders/Ni-V interfacial reactions are different from those in the solders/Ni couples, the reliability assessments of flip chip products should be based on the interfacial reactions of solders/Ni-V. Electric current with 500A/cm2 density exhibits the same effect upon Sn/Ni-V interfacial reactions as upon those of Sn/Ni. The reaction phases are not altered, but the reaction rate is changed. At the interface where the electron flow and Sn atoms diffusion are co-current, the reaction rate is enhanced. In contrast, at the interface where the electron flow and Sn atoms diffusion are counter-current, the reaction rate is retarded. The result agrees with the momentum transfer theory.

並列關鍵字

interfacial reactions Ni-V Pb-free solders

參考文獻


30.Y. L. Lin, C. W. Chang, C. M. Tsai, and C. R. Kao, Journal of Electronic Materials, Vol. 35(5), pp. 1010-1016 (2006).
62.Tan Teck Chun, Tung Chih Hang and Chai Tai Chong, Proceedings from 28th International Symposium for Testing and Failure Analysis, pp. 127-132 (2002).
12.S.-W. Chen and C.-M. Chen, JOM, Vol. 55(2), pp. 62-67 (2003).
163.M. R. Rijnders, A. A. Kodentsov, J. A. van Beek, J. van den Akker and F. J. J. van Loo, Solid State Ionics, Vol. 95, pp. 51-59 (1997).
41.S.-W. Chen and C.-A. Chang, Journal of Electronic Materials, Vol. 33(10), pp. 1071-1079 (2004).

被引用紀錄


葉韶凱(2009)。鍍鎳處理對無鉛銲錫銲點機械性質與組織之影響研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2009.00588
方谷(2013)。錫-鎳-矽三元系統相平衡與錫-(銅)/鎳-矽界面反應〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/CYCU.2013.00164

延伸閱讀