透過您的圖書館登入
IP:18.218.138.170
  • 學位論文

雙鉬五重鍵與主族試劑的反應研究

Reactions of the Mo-Mo Quintuple Bond with Main Group Reagents

指導教授 : 蔡易州

摘要


本實驗室以雙氮基脒Li[HC(N-2,6-iPr2C6H3)2]為配基合成出第一個雙鉬五重鍵錯合物Mo2[μ-η2-HC(N-2,6-iPr2C6H3)2]2 (1),其具有低價數、低配位的特性,使其對小分子有豐富多變的反應性。錯合物1與一當量的二苯基鋅反應,可得錯合物(m-ZnC6H5)(1-C6H5)Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (2),一分子的二苯基鋅進行碳鋅加成反應,苯基鋅以架橋形式配位於雙鉬金屬間。將錯合物2與親電試劑溴化甲苯進一步反應,得到錯合物[m-2-HC(N-2,6-iPr2C6H3)2]Mo[-2:2-C6H5 Zn(C6H5)Br]Mo[m-2-HC(N-2,6-iPr2C6H3)(N-2-iPr-6-CH(1-CH2)CH3-C6H3)] (3),其有一溴原子橋接在鉬原子與鋅原子之間,且有一異丙基上甲基進行碳氫鍵的氧化加成反應。錯合物1也可與四當量的二苯基鋅反應,兩分子的苯基分別以端點形式鍵結於鉬上,形成錯合物(1-C6H5)2Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (5)。此外,錯合物1與兩當量的二甲基鋅反應,得到錯合物(m-2:1-Zn(CH3)2)2Mo2[m- 2-HC(N-2,6-iPr2C6H3)2]2 (6),其具有兩分子的二甲基鋅配位至雙鉬金屬上,形成兩片架橋配基;若將錯合物6溶於溶劑,會立刻轉變為錯合物(1-CH3)2(THF)Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (7),兩分子的甲基以端點形式鍵結於鉬上,且其中一個甲基上的氫原子與鉬金屬間存在著微弱的agostic作用。 另外,錯合物1與兩當量的三甲基鋁反應,會形成一非常不穩定的錯合物[m-(CH3)2Al(CH3)2]Mo[m-2-HC(N-2,6-iPr2C6H3)(N-2-iPr-6-CH(1-CH2)CH3-C6H3)] (m-H)Al(CH3)[m-2-HC(N-2,6-iPr2C6H3)2]Mo(1-CH3) (8),一分子的三甲基鋁進行碳-鋁加成反應至鉬鉬金屬鍵上形成架橋配基,且有一鉬金屬與雙氮基脒配基上氮原子的鍵結斷裂,並與鋁原子生成新的氮鋁鍵,最後還有一異丙基上甲基進行了碳氫鍵活化配位於鋁原子上。錯合物8於室溫下會立刻轉變為一中間產物9,其只要接觸到含有氧原子的溶劑即會形成錯合物Mo(Solvent)[m-2-HC(N-2,6-iPr2C6H3)2](m-CH3)Mo[m-2-HC(N-2,6-iPr2C6H3)(N-2- iPr-6-CH(1-CH2)CH3-C6H3)] (Solvent = THF (10), Et2O (11)),具有一個甲基橋接於雙鉬金屬間,並有一異丙基上甲基進行碳氫鍵活化配位於鉬金屬上。將錯合物1與四當量的三乙基鋁反應,會有一分子的三乙基鋁進行碳-鋁加成反應並以架橋形式配位至雙鉬金屬鍵上,且具有兩個乙烯基分別配位於鉬金屬上,形成錯合物(2-C2H4)Mo[m-2-HC(N-2,6-iPr2C6H3)(N-2-iPr-6-CH(1-CH2)CH3-C6H3)](m-H) Al(C2H5)[m-2-HC(N-2,6-iPr2C6H3)2]Mo(2-C2H4) (12)。 錯合物1若與一當量的苯基矽烷反應,則形成錯合物[m-Si(H)C6H5]Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (13) ,有一分子的苯基矽烷進行氧化加成至雙鉬金屬上,並脫去一分子的氫氣,且錯合物13可活化微量的水分子進行氧化加成打斷氫氧鍵,形成錯合物(1-H)(1-OH)[m-Si(H)C6H5]Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (14),此外,錯合物13可利用降溫1H-NMR實驗証實其具有一流變行為,並推算出流變過程的速率常速為88.8 s1及活化能為10.59 kcal/mol,而錯合物14則可利用升溫1H-NMR實驗証實也具有一流變行為,同樣可推算出流變過程的速率常速為56.61 s1及活化能為15.75 kcal/mol。除此之外,將錯合物1與一當量的二苯基鍺烷進行反應,一分子的二苯基鍺烷進行氧化加成並脫去一分子的氫分子,形成鍺烯以架橋形式作為配基配位於雙鉬金屬間,形成錯合物[m-Ge(C6H5)2]Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (15)。 若將錯合物1與三當量的異氰酸苯酯反應,產生錯合物(m-1:2-PhNCO)(m-2:2-CON(Ph)CONPh)Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (16),具有一分子的異氰酸苯酯配位於雙鉬金屬上,反向位置有另兩分子異氰酸苯酯經過碳氮偶合配位於雙鉬上;若與四當量的異氰酸苯酯反應,則有四分子異氰酸苯酯分別兩兩進行碳氮偶合配位於雙鉬上,形成錯合物[m-2:2-CON(Ph)C(O)NPh][m-2:2-CON(Ph)CONPh]Mo2[m-2-HC(N-2,6-iPr2 C6H3)2]2 (17)。此外,錯合物1能有效的催化異氰酸苯酯進行三聚合環化反應,產生1,3,5-異氰酸三苯基酯。

並列摘要


The low-coordinate and low-valent quintuple bonded dimolybdenum complex, Mo2[μ-η2-HC(N-2,6-iPr2C6H3)2]2 (1), displays remarkable reactivity toward main group reagents. Undergo an oxidative addition of 1 equiv of diphenylzinc to the Mo-Mo quintuple bond of 1, the dimolybdenum complex, (m-ZnC6H5)(1-C6H5)Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (2) is afforded. Subsequent treatment of 2 with 1 equiv of benzyl bromide gives a novel dimolybdenum complex, [m-2-HC(N-2,6-iPr2C6H3)2]Mo[-2:2-C6H5Zn(C6H5)Br]Mo[m-2-HC(N-2,6-iPr2C6H3)(N-2-iPr-6-CH(1-CH2)CH3-C6H3)] (3), where one Br atom coordinates between molybdenum and zinc and the molybdenum center accompanies with C-H bond activation of methyl groups. Addition of 4 equiv of diphenylzinc to 1 leads to the formation of the quadruply-bonded dimolybdenum complex, (1-C6H5)2Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (5), which functionalized of the Mo-Mo quintuple bond by two phenyl groups. Reaction of 1 with 2 equiv of dimethylzinc affords (m-2:1-Zn(CH3)2)2Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (6), which is unstable in solvent at room temperature, it transforms into (1-CH3)2(THF)Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (7) quickly. Each molybdenum has one phenyl group coordinates on it, and there is weak agostic interaction between the hydrogen atom of methyl group and the molybdenum center. Treatment of 1 with 2 equiv of trimethylaluminum gives the unstable complex, [m-(CH3)2Al(CH3)2]Mo[m-2-HC(N-2,6-iPr2C6H3)(N-2-iPr-6-CH(1-CH2)CH3-C6H3)] (m-H)Al(CH3)[m-2-HC(N-2,6-iPr2C6H3)2]Mo(1-CH3) (8). The formation of 8 is through the carboalumination of 1 equiv of trimethylaluminum to the Mo-Mo quintuple bond accompanies with a C-H bond activation of methyl group. Complex 8 changes into the intermediate complex 9, which then transforms into Mo(Solvent)[m-2-HC(N-2,6-iPr2C6H3)2](m-CH3)Mo[m-2-HC(N-2,6-iPr2C6H3)(N-2- iPr-6-CH(1-CH2)CH3-C6H3)] (Solvent = THF (10), Et2O (11)) when it contacts solvents like tetrahydrofuran or ether. Complex 10 and 11 contain one methyl group bridging between two molybdenum centers and there is C-H bond activation of methyl group to the molybdenum. Reaction of 1 with 4 equiv of triethylaluminum gives (2-C2H4)Mo[m-2-HC(N-2,6-iPr2C6H3)(N-2-iPr-6-CH(1-CH2)CH3-C6H3)](m- H)Al(C2H5)[m-2-HC(N-2,6-iPr2C6H3)2]Mo(2-C2H4) (12). The formation of 12 is through the carboalumination of 1 equiv of triethylaluminum to the Mo-Mo quintuple bond accompanies with a C-H bond activation of methyl group, and there are two vinyl groups coordinate to the molybdenum centers. Treatment of 1 equiv of phenylsilane to 1 gives rise to the formation of [m-Si(H)C6H5]Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (13), which is formed via an oxidative addition of one molecular phenylsilane to the dimolybdenum quintuple bond, and then releases one molecular hydrogen gas. Besides, Complex 13 can activate a small amount of water to give the novel product, (1-H)(1-OH)[m-Si(H)C6H5]Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (14). Complex 13 and 14 exhibit the fluxional behavior, which have been characterized by variable temperature NMR. Introduction of 1 equiv of diphenylgermane to 1 leads to the formation of a lantern-type quadruply-bonded dimolybdenum complex, [m-Ge(C6H5)2]Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (15). Treatment of 1 with 3 equiv and 4 equiv of phenylisocyanate affords (m-1:2-PhNCO)(m-2:2-CON(Ph)CONPh)Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (16) and [m-2:2-CON(Ph)C(O)NPh][m-2:2-CON(Ph)CONPh]Mo2[m-2-HC (N-2,6-iPr2 C6H3)2]2 (17), respectively. Complex 16 is formed via a C-N coupling in a “head-to-tail” mode, and one molecular phenylisocyanate coordinates on molybdenum centers. On the other hand, via C-N coupling, complex 17 has two pairs of two molecules of phenylisocyanate coordinate to the molybdenum centers. Beside, 1 can effectively catalyzes the cyclotrimerization of phenylisocyanate under mild conditions, affords high yield of 1,3,5-triphenylisocyanurate.

並列關鍵字

無資料

參考文獻


(1) Alvarez, S. Coord. Chem. Rev. 1999, 13, 193.
(2) Cummins, C. C. Prog. Inorg. Chem. 1998, 47, 685.
J. D. J. Am.Chem. Soc. 1995, 117, 4999.
Musaev, D. G.; Morokuma, K. J. Am.Chem. Soc. 1998, 120, 2071.
34, 2042.

被引用紀錄


薛翔文(2013)。雙核金屬錯合物之合成及反應性研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://doi.org/10.6843/NTHU.2013.00398
陳譔宇(2013)。一. 雙鎳金屬雙氮基脒錯合物之反應性研究 二. 異核雙金屬錯合物合成之探討〔碩士論文,國立清華大學〕。華藝線上圖書館。https://doi.org/10.6843/NTHU.2013.00397
王韻涵(2012)。1. 合成具不對稱雙氮基脒配位基之雙鉻五重鍵錯合物 2. 1,2-苯基及1,2-吡嗪雙鉬四重鍵錯合物之氧化反應〔碩士論文,國立清華大學〕。華藝線上圖書館。https://doi.org/10.6843/NTHU.2012.00235
Chuang, F. J. (2014). 雙鉬五重鍵錯合物及其鎳-δ錯合物的反應性研究 [master's thesis, National Tsing Hua University]. Airiti Library. https://www.airitilibrary.com/Article/Detail?DocID=U0016-2912201413513650
Chang, Y. H. (2014). 含鈣及鐿之雙鉻金屬錯合物之反應性研究 [master's thesis, National Tsing Hua University]. Airiti Library. https://www.airitilibrary.com/Article/Detail?DocID=U0016-2912201413513649

延伸閱讀