透過您的圖書館登入
IP:3.16.212.99
  • 學位論文

氧化鋅奈米線應用於非揮發記憶體之研究

Study on Non-volatile Memory Based on ZnO Nanowires

指導教授 : 姬梁文
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在本篇論文中,使用射頻磁控濺鍍系統(RF-sputter)在室溫中濺鍍氧化鋅薄膜在銦錫氧玻璃基板(ITO)上當晶種層,再使用化學水域法成長氧化鋅奈米線(ZNO nanowire),觀察氧化鋅奈米柱陣列在退火前後的表面結構形貌,以及改變氧化鋅奈米柱對記憶體轉態影響。 第一步分:使用射頻磁控濺鍍濺鍍上一層氧化鋅薄膜作為晶種後,使用低溫水熱法,以不同時間成長氧化鋅奈米柱陣列,接著在氧氣中不同的退火時間處理後探討表面結構形貌,並在材料方面使用X光繞射頻譜圖分析(XRD)、場發射掃描電子顯微鏡(FE-SEM),對薄膜表面形貌進行分析。 第二部分:利用低溫水熱成長氧化鋅奈米線製作非揮發記憶體於ITO玻璃基板,討論經由不同時間成長氧化鋅奈米線,對於Forming、Set、Reset電壓,原始阻態阻值、高阻態阻值、低阻態阻值以及阻值比。在成長1小時到4小時之間,探討出成長3小時時間奈米柱長度約為1.5μm,Forming電壓約為6.54V,Set電壓約為2.64V,Rest電壓約為-2.34V,原始阻值約為2.07×108Ω,高阻態阻值約為230Ω,低阻態阻值約為1740Ω,阻值比約為7.5。 第三部分: 利用低溫水熱成長氧化鋅奈米線製作非揮發記憶體於ITO玻璃基板,探討出最佳氧化鋅奈米線成長時間,接著將最佳參數的試片分別以在氧氣中不同溫度退火,退火時間分別為3分鐘、6分鐘、9分鐘。探討出氧化鋅奈米柱退火時間6分鐘時Forming電壓約為6.06V,Set電壓約為3.25V,Rest電壓約為-2.78V,原始阻值約為7×106Ω,低阻態阻值約為108Ω,高阻態阻值約為2016Ω,阻值比約為18.7。

並列摘要


In this paper, we sputter ZnO thin films into indium tin oxide glass subrate (ITO) as the seed layer by RF magnetro sputtering system (RF-Sputter) at room temperature. Then, using chemical bath deposition (CBD) to grow ZnO chennai waters Vermicelli (ZNO nanowire). To oberve not only the surface structure morphology of zinc oxide nanorods array before and after annealing, but also the influence of memory transition when changing the zinc oxide nanowires The first part: Use the low-temperature hydrothermal method to grow the zinc oxide nanords array at the different time after using RF magnetron sputtering a layer of zinc oxide film as the seed. Next, Study the morphology of surface sturcture after different annealing treatment time in oxygen. For material, we use X-ray diffraction spectrum analysis (XRD) and field emission scanning electron microscope (FE-SEM) to anaylze the surface morphology of time. The seconed part: Use the low-temperature hydrothermal to grow the ZnO nanorods and produce the non-volatile memory in the ITO glases substrate. After that, we discuss the influence of the growth ZnO nanords via different times for (Forming, Set, Reset voltage, the original resistance state resistance, high resistance state resistance, low resistance state resistance and the resistance ratio. During four hours grew up, we obtain the result as below: The nanowires length is around 1.5μm in three hours growing, forming voltage were 6.45V, set voltage were 2.64V, reset voltage were 2.34V, the original resistance were 2.07×108Ω, high-impedance state resistance were 230Ω,low resistance state resistance were 1740Ω, the resistance ration were 7.5. The third part: Use the low-temperature hydrothermal to grow the ZnO nanowires and produce the non-volatile memory on ITO glass substrate and explore the best growing time for zinc oxide. Then, annealing the specimen with the optional parameters in oxygen with different temperature in 3 minutes, 6 minutes and 9 minutes. After 6 minutes annealing of ZnO nanowires, the testing data we have as below: Forming voltage were 6.06V, set voltage were 3.25V, the original resistance were 7×106Ω, low resistance state resistance were 108Ω, high impedance resistance were 2016Ω, the resistance ration were 18.8.

參考文獻


[1]. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J.Pham, R. He, and H. Choi, Adv. Funct. Mater. 12, 323(2002).
[2]. Z. L. Wang, Mater. Sci. Eng. R. 64, 33 (2009).
[3]. B. Yuhas and P. Yang, J. Am. Chem. Soc. 131, 3756 (2009).
[4]. W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai,Appl. Phys. Lett. 92, 022110(2008).
[5]. N. Xu, L. F. Liu, X. Sun, X. Y. Liu, D. D. Han, Y. Wang, R. Q. Han, J. F.Kang, and B. Yu, Appl. Phys. Lett. 92, 232112 (2008).

被引用紀錄


鄭宇智(2015)。磷摻雜氧化鋅奈米柱同質接面光感測器之研製〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827/NFU.2015.00038

延伸閱讀