Translated Titles

A Study on Using GFRP for Vertical Green Vegetation Units





Key Words

FRP (Fiber Reinforced Plastic) ; GFRP植生窗框 ; 三點抗彎實驗 ; 碳足跡 ; 生命週期成本 ; FRP ; GFRP Vegetation Window Frame ; Tree-point bending test ; Carbon Footprint ; Life Cycle Cost Analysis



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

本研究利用玻璃纖維強化高分子複合材料(Glass Fiber Reinforced Plastic, GFRP)質量輕、強度高、耐腐蝕、耐候性佳以及優異的隔熱與絕緣等特性,應用GFRP構件於「植生壁面綠化系統」,以取代傳統植生立面結構之金屬材料。本研究係分別進行GFRP構件生物相容性實驗與GFRP構件力學實驗。GFRP構件生物相容性實驗係以炮仗花與薜荔2種藤蔓植物,針對以GFRP螺桿圓棒與GFRP光滑圓棒2種構件進行表面不加工、塗布油漆與塗布環氧樹脂(Epoxy),共有12種搭配組合,其每組3盆共36盆植栽試體進行實驗。GFRP構件力學實驗包含GFRP構件三點抗彎載重實驗、GFRP構件化學接合拉力實驗共3組試體、GFRP構件物理接合拉力實驗共3組試體以及玻璃纖維紗束拉力實驗共15組試體。以上將藉由實驗結果與探討,將GFRP構件設計施作成「GFRP植生窗框」,供藤蔓植物進行攀爬。最後除了計算「GFRP植生窗框」碳足跡外,並以不鏽鋼材(SUS304)與鋁合金(6063-T5)材料模擬針對「GFRP植生窗框」之整體碳足跡減量效益進行探討。本研究乃運用FRP材料優於金屬材料之特性,應用於「植生壁面綠化系統」,以克服現有立面綠化之金屬結構的缺點,期許對於臺灣都市環境中之建築物發展植生壁面綠化技術能有所助益。

English Abstract

In this thesis, the application of light weight, high strength, anti-corrosion, weather resistant and heat insulation Glass Fiber Reinforced Plastic (GFRP) composite members to “Green Vegetation Units” to replace similar green facades made of metal materials is presented. Experiment was conducted on the bio-compatibility and mechanical behavior of the FRP components. In the bio-compatibility experiments, 2 species of vines - Pyrostegia venusta and Ficus pumila – were supported by 2 kinds of GFRP rods (threaded and smooth rods). Both kinds of the GFRP rods were then divided into three groups depending on the coating applied (i.e. epoxy coating, paint coating or no coating). For each of the 2 species of vines, 3 plant pots were allocated making it a total of 36 specimens in the experiment. The mechanical testing of the GFRP components include the three-point bending experiment; 3 specimens in the chemical bonding experiment and 3 specimens in the physical bonding experiment respectively; and the tensile strength experiment of 15 Glass fiber bundle specimens. From the results of the experiments discussed above, an “GFRP vegetation window frame” for vines to climb on was designed using the GFRP components. Finally, in order to investigate the carbon footprint and carbon reduction benefits of the “GFRP vegetation window frame”, carbon footprint comparison was made with that of a similar stainless steel (SUS304) frame and aluminum (6063-T5) before discussing the overall carbon footprint reduction benefits of the “GFRP vegetation window frame”. This study focuses on the superiority of GFRP materials over metal materials in making “Green Vegetation Units” in order to overcome the disadvantages of similar existing Green facades expected to be useful on urban buildings in Taiwan.

Topic Category 工程學院 > 土木與防災研究所
工程學 > 土木與建築工程
工程學 > 市政與環境工程
  1. 1. Azari-N, R. and Kim, Y. W., “Comparative Assessment of Life Cycle Impacts of Curtain Wall Mullions,” Building and Environment, Vol. 48, pp. 135-145 (2012).
  2. 2. Bianchini, F. and Hewage, K., “Probabilistic Social Cost-Benefit Analysis for Green Roofs: A Lifecycle Approach,” Building and Environment, Vol. 58, pp. 152-162 (2012).
  3. 3. BSI, PAS 2050—Specification for the Assessment of the Life Cycle Greenhouse Gas Emissions of Goods and Services, British Standards Institute, London (2011).
  4. 4. Chen, C. F., “Performance Evaluation and Development Strategies for Green Roofs in Taiwan: A Review,” Ecological Engineering, Vol. 52, pp 51-58 (2013).
  5. 6. Kneifel, J., “Life-Cycle Carbon and Cost Analysis of Energy Efficiency Measures in New Commercial Buildings,” Energy and Buildings, Vol. 42, No. 3, pp. 333-340 (2010).
  6. 7. Kosareo, L. and Ries R., “Comparative Environmental Life Cycle Assessment of Green Roofs,” Building and Environment, Vol. 42, No. 7, pp 2606-2613 (2007).
  7. 8. Koyama, T., Yoshinaga, M., Hayashi, H., Maeda, K. I. and Yamauchi, A., “Identification of Key Plant Traits Contributing to the Cooling Effects of Green Façades Using Freestanding Walls,” Building and Environment, Vol. 66, pp. 96-103 (2013).
  8. 9. Lisci, M., Monte, M. and Pacini, E., “Lichens and Higher Plants on Stone: A Review,” International Biodeterioration & Biodegradation, Vol. 51, No. 1, pp. 1-17 (2003).
  9. 10. Lopez-Anido, R., Michael, A. P. and Sandford, T. C., “Experimental Characterization of FRP Composite-Wood Pile Structural Response by Bending Tests,” Marine Structures, Vol. 16, No. 4, pp. 257-274 (2003).
  10. 11. Ottelé, M., Perini, K., Fraaij, A. L. A., Haas, E. M. and Raiteri, R., “Comparative Life Cycle Analysis for Green Façades and Living Wall Systems,” Energy and Buildings, Vol. 43, No. 12, pp. 3419-3429 (2011).
  11. 14. R’Mili, M., Moevus, M. and Godin, N., “Statistical Fracture of E-glass Fibres Using a Bundle Tensile Test and Acoustic Emission Monitoring,” Composites Science and Technology, Vol. 68, No. 7, pp. 1800-1808 (2008).
  12. 15. Su, X. and Zhang, X., “Environmental Performance Optimization of Window–Wall Ratio for Different Window Type in Hot Summer and Cold Winter Zone in China Based on Life Cycle Assessment,” Energy and Buildings, Vol. 42, No. 2, pp. 198-202 (2010).
  13. 16. Tarantini, M., Loprieno, A. D. and Porta, P. L., “A life Cycle Approach to Green Public Procurement of Building Materials and Elements: A Case Study on Windows,” Energy, Vol. 36, No. 5, pp. 2473-2482 (2011).
  14. 17. Tsai, W. H., Lin, S. J., Liu, J. Y., Lin, W. R. and Lee, K. C., “Incorporating Life Cycle Assessments into Building Project Decision-Making: An Energy Consumption and CO2 Emission Perspective,” Energy, Vol. 36, No. 5, pp. 3022-3029 (2011).
  15. 18. Wong, N. H., Tay, S. F., Wong, R., Ong, C. L. and Sia, A., “Life Cycle Cost Analysis of Rooftop Gardens in Singapore,” Building and Environment, Vol. 38, No. 3, pp. 499-509 (2003).
  16. 19. Wong, N. H., Tan, A. Y. K., Chen, Y., Sekar, K., Tan, P. Y., Chan, D., Chiang, K. and Wong, N. C., “Thermal Evaluation of Vertical Greenery Systems for Building Walls,” Building and Environment, Vol. 45, No. 3, pp. 663-672 (2010).
  17. 20. Zhao, F. M. and Takeda, N., “Effect of Interfacial Adhesion and Statistical Fiber Strength on Tensile Strength of Unidirectional Glass Fiber/Epoxy Composites. Part I: Experiment Results,” Composites Part A: Applied Science and Manufacturing, Vol. 31, No. 11, pp. 1203-1214 (2000).
  18. 22. 毛治國、陳添宇,“生命週期工程規劃管理之概念”,行政院研究發展考核委員會雙月刊,第35卷,第3期,第106-107頁(2011)。
  19. 23. 尹道鏹(2010),臺北科技大學設計學院大樓西向壁面綠化設計,碩士論文,國立臺北科技大學建築與都市設計研究所,臺北,臺灣(2010)。
  20. 臺北,臺灣(2009)。
  21. 26. 甘淑婷,混編纖維複合梁構件之三點抗彎實驗及力學行為探討,碩士論文,國立臺北科技大學土木與防災研究所,臺北,臺灣(2011)。
  22. 28. 李有豐,FRP複合材料於土木與建築工程之應用,台灣區複合材料工業同業公會,臺北,臺灣(2012)。
  23. 29. 李有豐、徐增興、余忠政,“FRP構件物理及化學結合剪力強度之研究”,第十一屆結構工程研討會論文集,臺中,臺灣(2012)。
  24. 31. 林容瑋,產品服務系統之減碳評估-以洗衣機為例,碩士論文,國立臺北科技大學環境工程與管理災研究所,臺北,臺灣(2011)。
  25. 32. 洪明中,CFRP棒應用於高強度混凝土梁之力學行為探討與耐久性之研究,碩士論文,國立臺北科技大學土木與防災研究所,臺北,臺灣(2008)。
  26. 33. 吳國洋,混凝土製品應用於土木工程之減碳效益評估-以道路、建築工程為例,碩士論文,國立中央大學土木工程研究所,桃園,臺灣(2010)。
  27. 34. 吳嘉濠,FRP橋面版構件於三點抗彎測試與有限元素分析之研究,碩士論文,國立臺北科技大學土木與防災研究所,臺北,臺灣(2012)。
  28. 39. 陳佳榮,建築物壁面綠化構法之研究以支撐架系統為例,碩士論文,國立成功大學建築研究所,臺南,臺灣(2010)。
  29. 40. 張又升,建築物生命週期二氧化碳減量評估,博士論文,國立成功大學建築研究所,臺南,臺灣(2002)。
  30. 42. 魏佩如,產品碳足跡計算不確定性分析之研究,碩士論文,國立臺北科技大學環境工程與管理災研究所,臺北,臺灣(2010)。
  31. 44. http://www.bsigroup.com/en/Standards-and-Publications/Industry-Sectors/Energy/PAS-2050/,The British Standards Institution。2012/09/12。
  32. 48. http://www.fibre-reinforced-plastic.com,Fiber Reinforced Plastic。2013/02/09。
  33. 5. Hammond, G. and Jones, C., Inventory of Carbon and Energy (ICE) Version 1.6a, University of Bath, Bath (2008).
  34. 12. Pérez, G., Rincón, L., Vila, A., González, J. M. and Cabeza, L. F., “Green Vertical Systems for Buildings as Passive Systems for Energy Savings Applied,” Energy, Vol. 88, No. 12, pp. 4854-4859 (2011).
  35. 13. Petrescu, I., Mohora, C. and Ispas, C., “The Determination of Young Modulus for CFRP Using Three Point Bending Tests at Different Span Lengths,” U.P.B. Sci. Bull., Series D, Vol. 75, No. 1, pp. 122-128 (2013).
  36. 21. 土木學會構造工委員會FRP橋梁研究小委員會,FRP橋梁-技術とその展望,社團法人土木學會,日本(2004)。
  37. 24. 交通部中央氣象局氣象預報中心,第四十四期 ~ 五十二期氣候監測報告,交通部中央氣象局,臺北,臺灣(2012、2013)。
  38. 25. 王銘琪,“立面綠化植生綠牆之發展淺介”,綠屋頂及綠牆交流討論推廣會,
  39. 27. 行政院環保署,產品與服務碳足跡計算指引,行政院環保署,臺北,臺灣(2010)。
  40. 30. 李有豐、蔡仁惠、陳偉堯、余忠政、陳明杰、王健安,“纖維強化高分子複合材料(Fiber Reinforced Plastic, FRP)於國家公園人行棧橋之應用”,中國土木水利工程學刊,第40卷,第3期,第53-61頁(2013)。
  41. 35. 胡軒桀,簡易植生牆植物適應性的選種,碩士論文,南華大學建築與景觀學系環境藝術碩士班,嘉義,臺灣(2012)。
  42. 36. 凌德麟,市政府建設專題研究報告第250輯-台北市立面景觀綠化之研究,台北市政府研究發展考核委員會,臺北(1994)。
  43. 37. 陳屏甫,國道預力混凝土橋與鋼橋生命週期成本評估個案之研究,碩士論文,國立中央大學營件管理研究所,桃園,臺灣(2005)。
  44. 38. 陳彥深,低二氧化碳排放建築設計策略與構法之研究,碩士論文,國立臺灣建築科技大學建築研究所,臺北,臺灣(2009)。
  45. 41. 蔡天玄,“碳纖維於植生綠化單元之應用-碳纖維於水質淨化之應用”,2012垂直綠化、綠建築與生態社區研討會,臺北,臺灣(2012)。
  46. 43. http://www.taiwanwatch.org.tw/book/2009sow-revisedpages/glossary(colorful).pdf,氣候變遷指南。2012/08/23。
  47. 45. http://www.carbontrust.com/,Carbon Trust。2012/09/22。
  48. 46. http://ec.europa.eu/dgs/jrc/index.cfm,The European Commission’s in-house science service。2012/09/28。
  49. 47. http://cfp.epa.gov.tw/carbon/ezCFM/Function/PlatformInfo/FLConcept/FLFootLifecycle.aspx,台灣產品碳足跡資訊網。2012/10/05
  50. 49. http://arquitectonica.com/geo/portfolio/ballet-valet-parking-garage/,Ballet Valet Parking Garage。2013/03/01
  51. 50. http://www.greendesignetc.net/GreenProducts_08_(pdf)/Stoneman_Josh-Vines(paper).pdf,Green Design Etc.。2013/03/15。
  52. 51. http://www.strongwell.com/about/the-pultrusion-process/,Strongwell。2013/03/20。