Title

圖案化透明導電基板之撓曲負載研究

Translated Titles

Flexural Load Research of Patterned Transparent Conductive Substrate

Authors

曾國睿

Key Words

透明導電薄膜 ; 圖案化氧化銦錫 ; 有限元素法 ; 撓曲負載 ; Transparent Conductive Film ; Patterned Indium Tin Oxide ; Finite Element Method ; Flexural Load

PublicationName

中原大學機械工程研究所學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

碩士

Advisor

李昌駿

Content Language

繁體中文

Chinese Abstract

行動裝置與穿戴式裝置的快速發展,平面顯示元件與觸控面板等裝置被需求具有高度的可撓性。因此,可撓式顯示技術成為下一世代的平面顯示技術。對於可撓式顯示技術發展,軟性透明導電薄膜為最重要的材料之一,而氧化銦錫為目前使用最廣泛的透明導電薄膜。由軟性基材和氧化銦錫構成的多層堆疊薄膜,其受到一定程度撓曲負載後,氧化銦錫因其陶瓷性質受到破壞,致使功能失效。從力學角度觀之,多層堆疊薄膜其軟性基材的厚度,與實際應用上具圖案化氧化銦錫的圖案寬度,對於氧化銦錫薄膜破壞的撓曲負載,擔當重要因素。 本研究和介面光電公司合作,取得實際銷售具圖案化氧化銦錫的軟性透明導電薄膜試片,其具有二種不同的圖案,寬度為3.92mm和0.37mm;與三種基材厚度,分別為50μm、100μm和125μm。在不同的曲率半徑下進行撓曲負載實驗,並量測電阻值變化。結果顯示同基材厚度的試片其圖案寬度為3.92mm的電阻值變化較小;相同圖案的試片其基材厚度為50μm的電阻值變化較基材厚度為100μm小。並採用有限元素法對於試片的簡化結構,模擬不同曲率半徑下的撓曲負載與應變的關係。模擬結果顯示於圖案寬度較寬,與基材厚度較薄的試片,其撓曲負載的應變值也較低。此外,於電阻變化最小的圖案寬度3.92mm,基材厚度50μm的試片在曲率半徑低於4mm時的撓曲負載,其電阻值變化會有突然升高的情況。相同條件下的模擬結果也得到於曲率半徑低於4mm時,應變會超過相關文獻討論的氧化銦錫薄膜破壞應變約為1.1%。 實驗結果和模擬結果的比較,發現在不同曲率半徑下的撓曲負載其電阻變化和應變具有高度的相關性。故可用模擬的方式來參數調整圖案寬度和基材厚度,達成運用氧化銦錫薄膜的可撓式元件的最佳化設計。

English Abstract

The rapid development of mobile and wearable devices, flat display device, touch panel and other devices are highly flexible requirement. Thus, the flexible display technology to become the next generation flat panel display technology. For flexible technology, flexible transparent conductive film is one of the most important material. Indium tin oxide is the most widely used transparent conductive film. Multi-layer stack film formed of a soft substrate and indium tin oxide which is a certain extent been a flexural loading, indium tin oxide because of the nature of the ceramic is destroyed, causing function failure. Mechanical point of view, the multilayer stack film of its soft substrate thickness, and a patterned indium tin oxide on the practical application of its pattern width, for indium tin oxide film destruction flexural load, play an important factor. This study cooperation with JTOUCH Corporation, obtained commercially available flexible transparent conductive film specimen with patterned indium tin oxide, having two different patterns, width is 3.92mm and 0.37mm; and three steps of thickness, respectively 50μm, 100μm and 125μm. Flexural loading experiment at different radius of curvature, and measuring resistance value variations. Results showed the same thickness of the substrate specimen is patterned width of 3.92mm smaller resistance changes;the same pattern as specimen substrate thickness of 50μm which resistance change smaller than 100μm. And using finite element method to simplify the structure of specimen, simulated flexural load and strain relations at different radius of curvature. Simulation results show that the pattern width of the specimen wider, substrate thickness of the specimen thinner, flexural load strain values are lower. In addition, the smallest change in the resistance of specimen is pattern width 3.92mm, substrate thickness 50μm, when the flexural load radius of curvature less than 4mm, the change in resistance suddenly increased. The simulation results are obtained under the same conditions in the radius of curvature is less than 4mm, strain exceed the relevant literature on the indium tin oxide film fracture strain of approximately 1.1%. The results compared with the simulation results and found that a flexural load at different radius of curvature which resistance changes and strain is highly correlated. It can be used to simulate the way parameter adjustment pattern width and thickness of the substrate, reached using indium tin oxide film of the flexible device optimized design.

Topic Category 工學院 > 機械工程研究所
工程學 > 機械工程
Reference
  1. [1] K. A. Sierros, N. J. Morris, K. Ramji and D.R. cairns, “Stress–corrosion cracking of indium tin oxide coated polyethylene terephthalate for flexible optoelectronic devices”, Thin solid films., Vol. 517, no. 8, pp. 2590-2595, Feb. 2009.
    連結:
  2. [2] H. Machinaga, E. Ueda, A. Mizuike, Y. Takeda, K. Shimokita and T. Miyazaki, “Effects of annealing temperature on mechanical durability of indium-tin oxide film on polyethylene terephthalate substrate”, Thin solid films., Vol. 559, no.1, pp. 36-39, May 2014.
    連結:
  3. [3] V. Vasu and A. Subrahmanyam, “Photovoltaic properties of spray pyrolytic grown indium tin oxide (ITO)/silicon junctions-dependence on substrate temperature”, Semicond. sci. technol., Vol. 7, no. 12, pp. 1471-1475, Dec. 1992.
    連結:
  4. [4] C. Coutal, A. Azéma and J. C. Roustan, “Fabrication and characterization of ITO thin films deposited by excimer laser evaporation”, Thin solid films., Vol.288, no. 1, pp. 248-253, Nov. 1996.
    連結:
  5. [5] J. Ma, D. Zhang, J. Zhao, C. Tan, T. Yang and H. Ma, “Preparation and characterization of ITO films deposited on polyimide by reactive evaporation at low temperature”, Appl. surf. sci., Vol. 151, no. 3. pp. 239-243, Oct. 1999.
    連結:
  6. [6] H. Kim and C. M. Gilmore, “Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices”, J. appl. physi., Vol.86, no. 11, pp. 6451-6461, Feb. 1999.
    連結:
  7. [7] J. H. Lan and J. Kanicki, “ITO surface ball formation induced by atomic hydrogen in PECVD and HW-CVD tools”, Thin solid films., Vol.304, no. 1, pp. 123-129, Jul. 1997.
    連結:
  8. [8] W. F. Wu, B. S. Chiou and S. T. Hsieh, “Effect of sputtering power on the structural and optical properties of RF magnetron sputtered ITO films”, Semicond. sci. technol., Vol. 9, no. 6, pp. 1242-1249, Jun. 1994.
    連結:
  9. [9] M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker and J. Stollenwerk, “Dependence of oxygen flow on optical and electrical properties of DC-magnetron sputtered ITO films”, Thin solid films., Vol. 326, no. 1, pp. 72-77, Aug. 1998.
    連結:
  10. [10] C. May and J. Strümpfel, “ITO coating by reactive magnetron sputtering-comparison of properties from DC and MF processing”, Thin solid films., Vol. 351, no.1, pp. 48-52, Aug. 1999.
    連結:
  11. [11] R. C. Chang, F. T. Tsai and C. H. Tu, “A direct method to measure the fracture toughness of indium tin oxide thin films on flexible polymer substrates”, Thin solid films., Vol. 540, no.1, pp. 118-124, Jul. 2013.
    連結:
  12. [12] Y. Leterrier, L. Médico, F. Demarco, J.-A.E. Månson, U. Betz, M.F. Escolà, M. Kharrazi Olsson and F. Atamny, “Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays”, Thin solid films., Vol. 460, no.1, pp. 156-166, Jul. 2004.
    連結:
  13. [13] D. R. Cairns, Richard P. Witte II, D. K. Sparacin, S. M. Sachsman, D. C. Paine and G. P. Crawford, “Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates”, Appl. phys. lett., Vol. 76, no. 11, pp. 1425-1427, Mar. 2000.
    連結:
  14. [14] M. Boehme and C. Charton, “Properties of ITO on PET film in dependence on the coating conditions and thermal processing”, Surf. coat. technol., Vol. 200, no. 1, pp. 932– 935, Oct. 2005.
    連結:
  15. [15] C. W. Yang and J W. Park, “The cohesive crack and buckle delamination resistances of indium tin oxide (ITO) films on polymeric substrates with ductile metal interlayers” Surf. coat. technol., Vol. 204, no. 16, pp. 2761– 2766, May 2010.
    連結:
  16. [16] S. K. Park, J. I. Han, D. G. Moon and W. K. Kim, “Mechanical Stability of Externally Deformed Indium–Tin–Oxide Films on Polymer Substrates”, Jpn. J. Appl. Phys., Vol. 42, no. 2A, pp. 623–629, Feb. 2003.
    連結:
  17. [17] Z. Chen, B. Cotterell, W. Wang, E. Guenther and S. J. Chua, “A mechanical assessment of flexible optoelectronic devices” Thin solid films., Vol. 394, no. 1, pp. 201-205, Aug. 2001.
    連結:
  18. [18] Z. Chen, B. Cotterell and W. Wang, “The fracture of brittle thin films on compliant substrates in flexible displays”, Eng. fract. mech., Vol. 69, no. 5, pp. 597-603, Mar. 2002.
    連結:
  19. [19] T. C. Li, C. F. Han, K. T. Chen and J. F. Lin, “Fatigue Life Study of ITO/PET Specimens in Terms of Electrical Resistance and Stress/Strain Via Cyclic Bending Tests”, J. disp. technol., Vol. 9, no.7, pp. 577-585, Jul. 2013.
    連結:
  20. [20] K. Alzoubi, M. M. Hamasha,S. Lu and B. Sammakia, “Bending Fatigue Study of Sputtered ITO on Flexible Substrate”, J. disp. technol., Vol. 7, no. 11, pp. 593-600, Nov. 2011.
    連結:
  21. [21] C. Y. Lim, J. K. Park, Y. H. Kim and J. I. Han, “Mechanical and Electrical Stability Indium-Tin-Oxide Coated Polymer Substrates under Continuous Bending Stress Condition”, Journal of International Council on Electrical Engineering, Vol. 2, no. 3, pp. 237-241, Feb. 2012.
    連結:
  22. [22] O. van der Sluis, A. A. Abdallah, P. C. P. Bouten, P. H. M. Timmermans, J. M. J. den Toonder and G. de With, “Effect of a hard coat layer on buckle delamination of thin ITO layers on a compliant elasto-plastic substrate: An experimental–numerical approach”, Eng. fract. mech., Vol. 78, no. 6, pp. 877-889, Apr. 2011
    連結:
  23. [23] C. M. Trottier, P. Glatkowski, P. Wallis and J. Luo, “Properties and characterization of carbon-nanotube-based transparent conductive coating”, J. Soc. Inf. Disp., Vol.13, no. 9, pp. 759-763, Sep. 2005.
    連結:
  24. [24] L. Hu, D. S. Hecht and G. Grüner, “Carbon nanotube thin films: fabrication, properties, and applications”, Chem. Rev., Vol. 110, no. 10, pp. 5790-5844, Jul. 2010.
    連結:
  25. [25] T. H. Seo, T. S. Oh, S. J. Chae, A. H. Park, K. J. Lee, Y. H. Lee and E. K. Suh, “Enhanced light output power of GaN light-emitting diodes with graphene film as a transparent conducting electrode”, Jpn. j. appl. phys., Vol.50, no. 12R, pp. 125103-1-125103-4, Dec. 2011.
    連結:
  26. [26] J. K. Wassei and R. B. Kaner, “Graphene, a promising transparent conductor”, Mater. today., Vol.13, no. 3, pp. 52-59, Mar. 2010.
    連結:
  27. [28] D. S. Leem, A. Edwards, M. Faist, J. Nelson, D. D. C. Bradley and J. C. de Mello, “Efficient organic solar cells with solution-processed silver nanowire electrodes”, Adv. mat., Vol. 23, no. 38, pp. 4371-4375, Oct. 2011.
    連結:
  28. [29] J. Ajuria, I. Ugarte, W. Cambarau, I. Etxebarria, R. Tena-Zaera and R. Pacios, “Insights on the working principles of flexible and efficient ITO-free organic solar cells based on solution processed Ag nanowire electrodes”, Sol. energ. mat. sol. c., Vol. 102, pp. 148-152, Jul. 2012.
    連結:
  29. [30] M. G. Kang, T. Xu, H. J. Park, X. Luo and L. J. Guo, “Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes”, Adv. mat., Vol. 22, no. 39, pp. 4378-4383, Oct. 2010.
    連結:
  30. [31] L. Hu, H. Wu and Y. Cui, “Metal nanogrids, nanowires, and nanofibers for transparent electrodes”, MRS Bull., Vol.36, no. 10, pp. 760-765, Oct. 2011.
    連結:
  31. [32] J. Park, J. Lee and Y. Y. Noh, “Optical and thermal properties of large-area OLED lightings with metallic grids”, Org. electron., Vol.13, no. 1, pp. 184-194, Jan. 2012.
    連結:
  32. [33] 李佩璇, “含硬膜之可撓性基板的力學分析及應用,” 成功大學碩士論文, pp. 15-41, 2005.
    連結:
  33. 參考文獻
  34. [27] S.K. Bae, H.G. Kim, Y. B. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y.I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn. B. H. Hong and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes”, Nat. nanotechnol., Vol. 5, no. 8, pp. 574-578, Aug. 2010.
  35. [34] R. H. Gallagher, Finite Element Analysis unda-mentals, Prentice-Hall, New Jersey, 1975.
  36. [35] A. Salleo, W.S. Wong, Flexible electronics: material and application, Springer US, Oct 2009.