透過您的圖書館登入
IP:3.143.9.115
  • 學位論文

利用不連續加熱之方法進行熱嘴溫度控制之研究

Study on the Temperature Control of Nozzle in Hot Runner System via Discontinuous Heating Method

指導教授 : 陳夏宗
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


隨著產品的多樣化及品質之要求與原物料的上漲,熱澆道系統的應用愈見普及。然而,在熱澆道系統中,熱嘴溫度均勻度將直接影響著產品之良率,使得熱嘴的溫度控制技術愈來愈重要,因此只有掌握熱嘴溫度控制技術以達成均勻的熱嘴溫度,才能滿足多種成型應用與面對未來量產時的需求與問題。 本研究以250mm熱嘴為基礎,對加熱器之配置、感溫控制點之差異進行有系統的比較與分析,並利用3段式不連續加熱溫控之方式,成功將熱嘴之溫度控制在設定溫度300℃±10℃內,並大幅度的改善熱嘴前後溫度過低之問題,提升了熱嘴溫度均勻度,改善之幅度在熱嘴前端有18.9%,在熱嘴後端有22.9%。 論文中並建立熱嘴溫度模擬分析技術,並完成400mm、500mm及600mm熱嘴之加熱溫度設計與實驗驗證。在400mm熱嘴的模擬設計與實驗驗證上,在熱嘴前端溫度誤差為2.4%,而在熱嘴後端溫度誤差0.8%,最大誤差為熱嘴前端處之5.4℃溫差。在500mm熱嘴的模擬設計與實驗驗證上,嘴前端溫度之最大誤差為3.1%,而在熱嘴後端溫度最大誤差亦為3.1%,最大誤差為熱嘴前端40mm處之10℃的溫差。在600mm熱嘴的模擬設計與實驗驗證上,嘴前端溫度之最大誤差為4%,而在熱嘴後端溫度最大誤差為2.1%,最大誤差為熱嘴前端60mm處之11.3℃的溫差。若比較熱嘴整體溫度,則模擬與實驗最大誤差為4.8%。 藉由熱嘴溫度模擬分析技術之建立,成功設計出高溫度均勻度之熱嘴加熱溫度,對於未來利用模擬分析技術進行溫度模擬設計,將具有相當高之可靠度與應用效益。

並列摘要


Hot runner system is more and more popular in injection molding industry due to the product quality demand and the commodities cost. However, the nozzle temperature uniformity is the key issue of the product quality and the key technology of hot runner system. In this study, the 250mm nozzle has been applied to study the effects of heater design and control point on temperature uniformity. The results shown that the discontinuous heating method can control the nozzle temperature in 300℃±10℃ and have great improvement on the low temperature problem in the tip and in the rear end of nozzle. The nozzle temperature improvements are 18.9% in the tip and 22.9% in the rear end. Besides, the finite element method not only has been applied to reveal the heater design effects on temperature uniformity but also has been applied to design the 400mm, 500mm and 600mm nozzle. It was found that the discontinuous heating method can improve the temperature uniformity very well. The deviations between simulation and experiment are 2.4% in tip and 0.8% in rear end (400mm), 3.1% in tip and 3.1% in rear end (500mm), 4% in tip and 2.1% in rear end (600mm), respectively. The maxima deviations of 400mm, 500mm and 600mm nozzle between simulation and experiment are 5.4℃in tip, 10℃ in 40mm, 11.3℃ in 60mm, respectively. From the experiment results, the simulations not only shown the temperature distributions are very similar to experiment results but also shown the advantage in nozzle temperature design. The finite element method can be a very useful and efficient tool for nozzle temperature design and provides a great help to the industry.

參考文獻


43. 林承洋,“熱流板內加熱器溫度最佳化研究”,中原大學機械工程學系研究所碩士論文 (2009)。
3. 楊庭杰, “快速時序閥澆口系統應用於薄殼射出成型之探討”,中原大學碩士論文(2002)。
2. 王玉琳,“熱澆道時序閥澆口系統開發與製程特性之研究”,中原大學機械工程學系研究所碩士論文 (2001)。
33. Jong Wen-Ren, Chang Yu-Cheng, Adrianta Arne, Lin Cheng-Hao, “ Optimal design for a hot runner nozzle cooling system”, 2011Annual Technical Conference – ANTEC, 2, 1686-1691 (2011).
7. J. Blundy, D. Reitan, and J. Steele, “Advanced Valve Gate Technology for Use in Specialty Injection Molding”, 1998 Annual Technical Conference-ANTEC, 44, 631-635 (1998).

被引用紀錄


劉義福(2016)。研究熱澆道接合澆口幾何設計對於熔膠斷點溫度之影響〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201600082
林承洋(2015)。熱澆道系統之熱嘴加熱器設計研究〔博士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201500962

延伸閱讀