Title

混成針狀奈米氧化鋅/奈米碳管之合成 與氣體感測性質研究

Translated Titles

Synthesis of Hybrids Nanorod ZnO/MWCNTs for Gas Sensing

Authors

鄭承明

Key Words

奈米針狀氧化鋅 ; 多壁奈米碳管 ; 混成材料 ; 水熱法 ; 氣體感測 ; nanorod ZnO ; MWCNTs ; hybrid material ; hydrothermal synthesis ; gas sensing

PublicationName

大同大學材料工程學系所學位論文

Volume or Term/Year and Month of Publication

2007年

Academic Degree Category

碩士

Advisor

林鴻明

Content Language

英文

Chinese Abstract

為了改進傳統金屬氧化物半導體只能在高溫時操作的缺點,新型態的「混成材料」被發展出來。結合新特性的混成感測材料可以在較低溫度時偵測到氣體時之電阻值的變化。 一維的奈米材料具有「訊號傳導」與「高比表面積」之特性,適合發展於功能性應用方面,例如氣體感測元件。“奈米針狀氧化鋅和多璧奈米碳管的混成材料”即為一維奈米混成材料。本研究將利用水熱法,在140℃熱處理溫度,製備奈米級針狀氧化鋅與多壁奈米碳管的混成材料,並藉由EDS、XRD、SEM、TEM、HRTEM的檢測,對於混成材料進行成份分析、表面形態及內部結構的觀察。 本實驗分別對於奈米針狀氧化鋅/多壁奈米碳管的混成材料以及多壁奈米碳管,於不同溫度、不同NO2氣體濃度時進行感測性質之比較。實驗結果顯示,奈米針狀氧化鋅和多壁奈米碳管的混成材料相較多壁奈米碳管具有更高的靈敏度與較佳的回復性質。

English Abstract

In order to improve the disadvantage of MOS requiring operating at high temperatures, the developments of new type “hybrid material” are proposed. With new properties, “hybrid material” can detect the change of resistance at lower temperatures than pure MOS can. One dimensional (1D) nano materials have properties of “signal conduction” and “high ratio of surface area to volume”, which are suitable for application of functional materials, such as gas sensors. “Hybrids of nanorod ZnO/MWCNTs” is one of the “hybrid materials”. In this study, the hybrids of nanorod ZnO/MWCNTs are prepared via hydrothermal synthesis at low temperature about 140℃. Then, the hybrids of nanorod ZnO/MWCNTs are analyzed by scanning electron microscope (SEM) for its surface morphology, transmission electron microscope (TEM) for its microscopic structure, and high resolution transmission electron microscope (HRTEM) for its microscopic structure at atomic scale. More accurate structure information can be obtained through X-ray diffraction (XRD). The analysis of the chemical compositions is mainly examined by energy dispersive spectroscopy (EDS). MWCNTs after nitric acid treatment for 6 hours and hybrids of nanorod ZnO/MWCNTs gas sensors are compared in detecting system with various concentrations of NO2 gas (20, 40, 60, 80 and 100 ppm of NO2 in pure air) at different operative temperatures (50, 100, 150 and 200 ℃). The results of gas sensing show that hybrid of nanorod ZnO/MWCNTs has higher sensitivities and better recovery properties than MWCNTs in NO2 gas detection.

Topic Category 工程學院 > 材料工程學系所
工程學 > 工程學總論
Reference
  1. [1] S. Iijima, Nature 354 (1991) 56.
    連結:
  2. [5] Wei-Jen Liou, Hong-Ming Lin, Tsung-Yeh Yang, and Kuan-Nan Lin,"Hybrid MOS/CNTs Materials for Gas Sensing," Solid State Phenomena, Vol. 111, pp.19-24, (2006).
    連結:
  3. [6] Wei-Jen Liou, Hong-Ming Lin, “Nano Hybrid of TiO2/carbon black for NO2 Gas Sensing.” China Particuology.
    連結:
  4. [11] B. Sang, A. Yamada, M. Konagai, Jpn. J. Appl. Phys. 37 (1998) L206.
    連結:
  5. [12] J.F. Cordaro, Y. Shim, J.E. May, J. Appl. Phys. 60 (1986) 4186.
    連結:
  6. [15] E. Ivers-Tiffee, K. Seitz, Am. Ceram. Soc. Bull. 66 (1987) 1384.
    連結:
  7. [17] S.M. Haile, D.W. Jonhagon, G.H. Wiserm, J. Am. Ceram. Soc. 72 (1989) 2004.
    連結:
  8. [20] B.G. Wang, E.W. Shi, W.Z. Zhong, Cryst. Res. Technol. 33 (1998) 937.
    連結:
  9. [23] C. Xu, G. Xu, Y. Liu, G. Wang, Solid State Commun. 122 (2002) 175.
    連結:
  10. [31] a) Y. Wu, P. Yang, J. Am. Chem. Soc. 123 (2001) 3165;
    連結:
  11. b) R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4 (1964) 89;
    連結:
  12. [32] Z.Q. Li, Y.J. Xiong, Y. Xie, Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route, Inorg. Chem. 42 (2003) 8105–8109.
    連結:
  13. [33] S.M. Haile, D.W. Jonhagon, G.H. Wiserm, J. Am. Ceram. Soc. 72 (1989) 2004.
    連結:
  14. [34] Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science (2001) 291, 1947.
    連結:
  15. [35] Zhang, Z. X.; Wang, J. X.; Yuan, H. J.; Gao, Y.; Liu, D. F.; Song, L.; Xiang, Y. J.; Zhao, X. W.; Liu, L. F.; Luo, S. D.; Dou,X. Y.; Mou, S.C.; Zhou, W. Y.; Xie, S. S. J. Phys. Chem. B (2005) 109, 18352.
    連結:
  16. [37] R.S. Wagner, and W.C. Ellis, Appl. Phy. Lett, 4, 89, (1964).
    連結:
  17. [38] A.M. Morales, and C.M. Lieber, Science, 279, 208, (1998).
    連結:
  18. [41] Y. Wu, and P. Yang. J. Am, Chem. Soc. 123, PP. 3165 (2001).
    連結:
  19. [43] B. Liu, H.C. Zeng, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm, J. Am. Chem. Soc. 125 (2003) 4430.
    連結:
  20. [44] J.M. Wang, L. Gao, Wet chemical synthesis of ultralong and straight single-crystalline ZnO nanowires and their excellent UV emission properties, J. Mater. Chem. 13 (2003) 2551.
    連結:
  21. [45] M. Guo, P. Diao, S.M. Cai, Hydrothermal growth of well-aligned ZnO nanorod arrays: dependence of morphology and alignment ordering upon preparing conditions, J. Solid State Chem. 178 (2005) 1864.
    連結:
  22. [46] Dobryszycki, J.; Biallozor, S. Corros. Sci. (2001) 43, 1309.
    連結:
  23. [47] Liu, X. H.; Yang, J.; Wang, L.; Yang, X. J.; Lu, L. D.; Wang, X. Mater. Sci. Eng. A (2000) 289, 241.
    連結:
  24. [48] Wang, W. Z.; Wang, G. H.; Wang, X. S.; Zhan, Y. J.; Liu, Y. K.; Zheng, C. L. AdV. Mater. (2002) 14, 67.
    連結:
  25. [56] J. R. Heath, F. K. LeGoues, Chem. Phys. Lett. (1993) 208, 263.
    連結:
  26. [57] Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ. Young’s modulus of single-walled nanotubes. Phys Rev B (1998) 58 (20): 14013–9.
    連結:
  27. [58] Yu M-F, Files BS, Arepalli S, Ruoff RS. Tensile loading of ropes of single wall carbon naotubes and their mechanical properties. Phys Rev Lett (2000) 84 (24):5552–5.
    連結:
  28. [59] Carbon Nanotechnologies, Inc., http://www.cnanotech.com.
    連結:
  29. [60] Iijima S. Helical microtubules of graphitic carbon. Nature (1991) (56): 56–8.
    連結:
  30. [62] Tahhan M, Truong VT, Spinks GM, Wallace GG. Carbon nanotube and polyaniline composite actuators. Smart Mater Struct (2003) 12: 626–32.
    連結:
  31. [63] Smela E. Conjugated polymer actuators for biomedical applications. Adv Mater (2003) 15(6):481–94.
    連結:
  32. [65] Wood JR, Wagner HD. Single-wall carbon nanotubes as molecular pressure sensors. Appl Phys Lett (2000) 76(20): 2883–5.
    連結:
  33. [66] Kong J, FrankinNR, Zhou C, ChaplineMG, Peng S, Cho K, et al. Nanotube molecular wires as chemical sensors. Science (2000) (287): 622–5.
    連結:
  34. [67] Ghosh S, Sood AK, Kumar N. Carbon nanotube flow sensors. Science (2003) 299(5609): 1042–4.
    連結:
  35. [69] Applied Sciences, Inc., and Pyrograf Products, Inc., http://www.apsci. com/.
    連結:
  36. [70] Hata K, Futaba DN, Mizuno K, Namai T, Yamura M, Iijima S.Waterassisted highly efficient syn thesis of impurity-free single-wall carbon nanotubes. Science (2004) 306 (19).
    連結:
  37. [75] Wei C, Srivastava D. Nanomechanics of carbon nanofibers: structural and elastic properties. Appl Phys Lett (2004) 85(12):2208–10.
    連結:
  38. [76] Li WZ, Wen JG, Sennett M, Ren ZL. Clean double-walled carbon nanotubes synthesized by CVD. Chem Phys Lett (2003) 368: 299–306.
    連結:
  39. [77] Department of Electronic Materials Engineering, The Australian National University, Canberra.
    連結:
  40. [78] de Jonge, N., et al., Nature(2002) 420, 393
    連結:
  41. [79] Endo, M., et al., Carbon(2001) 39, 1287
    連結:
  42. [84] S. R. Morrison, Sensors and Actuators, 2 (1982) 329.
    連結:
  43. [85] G. Heiland, Sensors and Actuators, 2 (1982) 343.
    連結:
  44. [87] Tetsuro Seiyama, Akio Kato, Kiyoshi Fujiishi, and Masanori Nagatani, AnalyticalChemistry, 34 (1962) 1502-1503.
    連結:
  45. [91] J. Mizsei, How can sensitive and selective semiconductor gas sensors be made. Sensors and Actuators B 23 (1995) 173-176.
    連結:
  46. [2] Huang, M. H.; Mao, S.; Feick, H. N.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Science (2001) 292, 1897.
  47. [3] Kong, Y. C.; Yu, D. P.; Zhang, B.; Fang W.; Feng, S. Q. Appl. Phys. Lett. (2001) 78, 407.
  48. [4] Zheng, M. J.; Zhang, L. D.; Li, G. H.; Shen, W. Z. Chem. Phys. Lett. (2002) 363, 123.
  49. [7] Wei-Jen Liou, Tsung-Yeh Yang, Kuang-Nan Lin, Ching-Hong Yang, -Ming Lin, "Sensing Properties of CNT hybrid MOS-based Sensors," Materials Research Society, Vol. 828, pp. A2.6.1-A2.6.11, (2005).
  50. [8] P. Zu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Solid State Commun. 103 (1997) 459.
  51. [9] E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, T. Fukuda, J. Cryst. Growth 260 (2004) 166.
  52. [10] T.L. Yang, D.H. Zhang, J. Ma, H.L. Ma, Y. Chen, Thin Solid Films 326 (1998) 60.
  53. [13] P. Verardi, N. Nastase, C. Gherasim, C. Ghica, M. Dinescu, R. Dinu, C. Flueraru, J. Cryst. Growth 197 (1999) 523.
  54. [14] R.J. Lanf, W.D. Bond, Am. Ceram. Soc. Bull. 63 (1984) 278.
  55. [16] N.Y. Lee, M.S. Kim, J. Mater. Sci. 26 (1991) 1126.
  56. [18] C.H. Lu, C.H. Yeh, Ceram. Int. 26 (2000) 351.
  57. [19] W.J. Li, E.W. Shi, W.Z. Zhong, Z. Yin, J. Cryst. Growth 203 (1999) 186.
  58. [21] M.C. Neves, T. Trindade, A.M.B. Timmons, J.D. Pedrosa de Jesus, Mater. Res. Bull. 36 (2001) 1099.
  59. [22] J. Zhang, L. Sun, H. Pan, C. Liao, C. Yan, New J. Chem. 26 (2002) 33.
  60. [24] J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, S. T. Lee, Chem. Mater. 14 (2002) 1216.
  61. [25] J.T. Hu, T.W. Odom, C.M. Lieber, Acc. Chem. Res. 32 (1999) 435.
  62. [26] a) Y. Cui, C.M. Lieber, Science 291 (2001) 851;
  63. b) W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295 (2002) 2425;
  64. c) Y. Cui, Q. Wei, H. Park, C.M. Lieber, Science 293 (2001) 1289;
  65. d) M.B. Sigman Jr., A. Ghezelbash, T. Hanrath, A.E. Saunders, F. Lee, B.A. Korgel, J. Am. Chem. Soc. 125 (2003) 16050;
  66. e) J.D. Holmes, K.P. Johnston, R.C. Doty, B.A. Korgel, Science 287 (2000) 1471.
  67. [27] M. Huang, S. Mao, H. Feick, H. Yan, Y.Wu, H. Kind, E.Weber, R. Russo, P. Yang, Science 292 (2001) 1897.
  68. [28] J. Hu, L. Li, W. Yang, L. Manna, L. Wang, A.P. Alivisatos, Science 292 (2001) 2060.
  69. [29] L. Li, J. Ho, W. Wang, A.P. Alivisatos, Nano Lett. 1 (2001) 349.
  70. [30] N. Pinna, K. Weiss, J. Urban, M.P. Pileni, Adv. Mater. 13 (2001) 261.
  71. c) N. Wang, Y.H. Tang, Y.F. Zhang, C.S. Lee, S.T. Lee, Phys. Rev. B 58 (1998) R16024;
  72. d) M. Zheng, L. Zhang, X. Zhang, J. Zhang, G. Li, Chem. Phys. Lett. 334 (2001) 298;
  73. e) Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15 (2003) 353.
  74. [36] G.S. Wua,b,*, T. Xiea, X.Y. Yuana, Y. Lia, L. Yanga, Y.H. Xiaoa, L.D. Zhanga Solid State Communications 134 (2005) 485–489.
  75. [39] Z.W. Pan, Z.R. Dai, and Z.L. Wang, Science, 291, 1947, (2001).
  76. [40] J.Q. Hu, Q. Li, N. B. Wong, C.S. Lee, and S.T. Lee, Chem. Mater. 14, (2002)
  77. [42] J.W. Diggle, T.C. Downie, C.W. Goulding, Chem. Rev. 69 (1969) 365. G.S. Wu et al. / Solid State Communications 134 (2005) 485–489.
  78. [49] Zhu, J. J.; Liao, X. H.; Zhao, X. N.; Chen, H. Y. Mater. Lett. (2001) 49, 91.
  79. [50] Changlong Jiang, Wangqun Zhang, Guifu Zou, Weicao Yu, and Yitai Qian J. Phys. Chem. B (2005) 109, 1361-1363.
  80. [51] Yi Wang, Meng Li. Materials Letters 60 (2006) 266 – 269
  81. [52] Zhengquan Li, Yujie Xiong, and Yi Xie. lnorg. Chem. (2003) 42, 8105-8109.
  82. [53] Y. Wu, H. Yan, M.Huang, B. Messer, J. Song, and P. Yang, Chem Eur. J. 2002, 8, 1260; (b) M. S. gudiksen, and C. M. Lieber, J. Am. Chem. Soc. (2002) 122, 8801.
  83. [54] Younan Xia, Peidong Yang, Yugang Sun, Yiyinh Wu, Brian Mayers, Byron Gates, Yadong Yin, Franklin Kim, and Haoquan Tan, Adv. Mater. (2003) 15, 353.
  84. [55] (a) A. J. Yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xua, Appl. Phys. Lett 2001, 79, 1039; (b) G.S. Cheng a, S.H. Chen a, X.G. Zhu a, Y.Q. Mao b, and L.D.Zhang, Materials Science & Engineering A (2000) A186, 165.
  85. [61] Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM,etal.Carbonnanotubeactuators. Science (1999) 284(5418):1340–4.
  86. [64] Peng S, O’Keeffe J, Wei C, Cho K, Kong J, Chen R. Carbon nanotube chemical and mechanical sensors. Conference paper for the third international workshop on SHM (2001).
  87. [68] Nanolab, Inc., info@nano-lab.com.
  88. [71] FirstNano, Inc., 5571 Ekwill St., Santa Barbara, California 93111.
  89. [72] Yihong W. Carbon nanowalls. http://www.ece.nus.edu.sg/showcase/ Wuyihong.htm.
  90. [73] Smalley RE. Smalley’s web image gallery, Rice University, http:// smalley.rice.edu/smalley.cfm.
  91. [74] Rochefort A, Nano-CERCA, Univ. Montreal, http://www.cs.infn.it/ de_martino_1.ppt.
  92. [80] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Nature (London) 386 (1997) 377.
  93. [81] G. Stan, M.J. Bojan, S. Curtarolo, S.M. Gatica, M.W. Cole, Phys. Rev. B 62 (2000) 2173–2180.
  94. [82] S.M. Gatica, M.J. Bojan, G. Stan, M.W. Cole, J. Chem. Phys. 114 (2001) 3765.
  95. [83] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, Cho, et al., Science 287 (2000) 622.
  96. [86] N. Yamazoe and T. Seiyama, Proc. Transducers, (1985) 376.
  97. [88] N. Taguchi, Japan Patent 45-38200 (1962).
  98. [89] N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, Surface Science, 86 (1979) 335-344.
  99. [90] Y. Shimizu and M. Egashira, MRS Bulletin, 24(6) (1999) 18-24.
  100. [92] C. Xu, T. Jun, N. Miura and N. Yamazoe, Chem.Lett, (1990) 441.
  101. [93] 林鴻明, 曾世杰, “奈米半導體材料之特殊氣體感測性質", 工業材料, 第157期 (2000) 163-169.
  102. [94] K. D. Schierbaun, U. K. Kirner, J. F. Geiger and W. Gopel, Sensors and Actuators B, 4 (1991) 87-94.
  103. [95] Hongyan Xu, Xiulin Liu, Deliang Cui , Mei Li, Minhua Jiang, Sensors and Actuators B 114 (2006) 301–307.
Times Cited
  1. 廖淑娟(2011)。應用電漿CVD技術及後處理在阻抗與質量式化學感測元件。大同大學材料工程學系所學位論文。2011。1-144。