透過您的圖書館登入
IP:18.118.254.94
  • 學位論文

利用計算流體力學檢討潔淨室設計之適正性

An Examination in the Design of Cleanroom by Computational Fluid Dynamics

指導教授 : 胡石政

摘要


在潔淨室竣工且試車階段,時常會發生實際運轉情況與原始工程設計有所出入,而等到發現問題時已經是需要做大規模調整,不但費時費力,增加建造成本且會工期展延,故本研究主要目的是以數值方法去模擬各種建造案例,並驗證其設計方法,從模擬結果以量化指標分析出較佳之設計,提供給業界有效之建議,作為設計的依據。利用泛用計算流體力學套裝軟體FLUENT以及空調通風專用軟體AIRPAK進行分析。主要研究分為不同回風道設計之比較、不同外氣風管設計之比較、機台洩漏交叉污染情況、潔淨室中移動物體之流場分析。結果顯示潔淨室不同回風道設計以性能從高到低評比為兩側回風設計>兩側柱回風設計>單側回風設計>單側柱回風設計;長外氣風管設計之混風效果優於短外氣風管設計;當機台發生氣態分子污染物洩露時,製程區與作業區的機台會發生交叉汙染的現象;移動物體會破壞潔淨室的流場形式,進而可能會造成汙染。

並列摘要


After completion of construction of clean rooms, some discrepancies occur between the original design and actual operation at the commissioning stage; it, thus, is time-consuming, strenuous, and costly to overcome these concerns. This research aimed to predict the results of various arrangements of ventilation systems and propose some suggestions of effective designs. The computational fluid dynamics software Fluent and Airpak was employed in the study. This research compared the design of various return-air ducts and that of various outdoor-air ducts, analyzed the cross-contamination of tools, and examined the airflow patterns of clean rooms having an object moving. Results show that 1. the design of return-air ducts from higher to lower performance in the order was two-side wall return, two-side column return, single-side wall return, and single-side column return; 2. the longer outdoor-air ducts had better mixing effect than the shorter; 3. the cross contamination occurred in the regions of process and service in the case of contaminants generated by the tool; and 4. the moving object destroyed the airflow patterns of clean rooms and resulted in contamination.

參考文獻


[16] 黃淳鴻,潔淨室內自動引導搬運車之三維動態流場影響分析,國立台北科技大學冷凍空調研究所碩士論文,民95.
[1] W. C. Hinds, “Aerosol Technology,” Second Edition, 1999.
[3] “Cleanrooms and Associated Controlled Environments,” ISO14644-1 First Edition, 1999.
[5] S. C. Hu, Y. K. Chuah, “Deterministic simulation and assessment of air-recirw culation performance of unidirectional-flow cleanrooms that incorporate age of air concept,” Building and Environment, Vol. 38, 2003, pp.563–570.
[6] K. C. Noha, M. D. Oha, S. C. Leeb, “A numerical study on airflow and dynamic cross-contamination in thesuper cleanroom for photolithography process,” Building and Environment, Vol. 40, 2005, pp. 1431–1440.

被引用紀錄


林成彥(2009)。非單向流型潔淨室之室內懸浮微粒濃度與耗能特性分析〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-3107200917501000
朱曉斌(2010)。生技製藥廠之負壓實驗室氣流模擬〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-2801201021450400

延伸閱讀