透過您的圖書館登入
IP:3.145.12.242
  • 學位論文

單電源積體電荷放大器內建於模具內PZT壓力感測器之設計

The Design of Single Supply Power IC operational amplifier applied on PZT pressure sensor in a Mold

指導教授 : 黃榮堂 陳正光
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


壓電材質鋯鈦酸鉛(PZT)為製造壓力感應元件的重要材料,其壓電特性造成處理讀出電路的複雜性,而電荷放大器(Charge Amplifier)是最主要用來處理此訊號的電路,一般傳統的電荷放大器設計均為一正一負電壓源,且必須將訊號藉由同軸電纜線接至外部的電荷放大器,如此一來,不僅使得電荷放大器的成本增加,也使電荷放大器的體積過於龐大;因此,重新設計此架構,使放大器不但能在只提供單一電壓源的情況下正常工作,並將其設計能置入感測器內部,以減少其龐大的體積,而由於電壓源的改變,也可大幅改善功率消耗與訊號線的數目,另外,因感測器所處環境之射出成形機內部可能具有的溫度變化,所以提出能帶能隙參考電路來改善因溫度變化所造成的影響,並且依所設計之電路來佈局驗證及下線製作,關於訊號處理電路之分析設計,皆利用HSPICE來模擬驗證,晶片製作是採用TSMC 0.35um 2P4M的製程參數。

並列摘要


Lead-zirconate-titanate (PZT) ceramic is a significant material for making the force-sensing device; however its piezoelectric characteristic complicates the readout circuit. Charge amplifier is one of the main method for measuring piezoelectric characteristic through voltage-mode operational amplifier. In general, the traditional charge amplifier has a positive and a negative power sources, and the charge amplifier must be connected to the outside of the sensor. These properties cause a higher cost and a larger size. Accordingly, we redesign the charge amplifier, which could not only have the small size chip, but also fit to the package of sensor. This amplifier only work with one single power source, so it can decrease the power consumption. So we can reduce the signal lines in the chip. In addition, the temperature dependences of the designed sensor which installed inside the mold cavity, may cause huge heat in the measuring process. Then we proposed a bandgap reference circuit to improve the temperature-dependent effects. To sum up, the analyses of our signal processing circuit are simulated and verified by HSPICE, and it’s simulation and manufacture are based on TSMC 0.35μm 2P4M procedure.

參考文獻


〔7〕 "Piezoelectric Measurement System Comparison" http://www.dytran.com/
〔10〕 Ernest O. Doebelin, Measurement Systems Application and Design Fifth Edition, New York: McGraw-Hill Company, 2004, p.716-721.
〔11〕 Y. Hu, J. L. Solere, D. Lachartre, and R. Turchetta, “Design and Performance of a Low-Noise, Low-Power Consumption CMOS Charge Amplifier for Capacitive Detectors”, IEEE Transactions on Nuclear Science, Vol. 45, No. 1, February 1998.
〔13〕 Ka Nang Leung, Philip K. T. Mok, “Analysis of Multistage Amplifier-Frequency Compensation”, IEEE Transactions on Circuits and Systems-I, Vol. 48, No. 9, September 2001.
〔14〕 P. K. Chan, Y. C. Chen, “Gain-Enhanced Feedforward Path Compensation Technique for Pole-Zero Cancellation at Heavy Capacitive Loads”, IEEE Transactions on Circuits and Systems-I, Vol. 50, No. 12, December 2003.

被引用紀錄


陳楷錫(2011)。低雜訊電容讀取電路應用於MEMS壓力計元件之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2011.00347
許夙鈞(2008)。電容與阻抗量測電路應用於奈米碳管氣體感測器之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-0908200814515400
邱明傑(2008)。用於陣列壓阻式力量感測器之訊號處理電路設計〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-0708200813265200
趙弘維(2009)。高解析電流量測電路結合奈米碳管感測元件之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1908200921441100
葉智源(2010)。低雜訊讀取電路應用於 奈米碳管感測元件之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1708201009515700

延伸閱讀