透過您的圖書館登入
IP:3.145.156.46
  • 學位論文

Cu(CoN)與CoN薄膜應用於銅製程之特性研究

Characteristics of Cu(CoN) Film and CoN Film on Copper Interconnection

指導教授 : 方昭訓
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究利用磁控共濺鍍法在p-type Si (100)上沈積Cu(CoN)合金薄膜,並利用RTA在N2/H2(5%)氣氛下300-700˚C熱處理持溫10與30分鐘,合金薄膜並以FPP測量片電阻值、利用SEM觀察表面形貌、XRD分析晶體結構、附著性測試評估薄膜附著性、TEM觀察界面擴散情形、VSM量測薄膜磁性、I-V量測薄膜漏電流,探討製程N2含量及退火溫度對Cu(CoN)合金薄膜之特性影響。 結果顯示製程N2氣體比例高於40%所得之Cu82.3Co3.4N14.3、Cu79.9Co4.7N15.4、Cu81.4Co2.6N16.0、Cu79.3Co4.4N16.3、Cu75.8Co6.5N17.7、Cu81.9Co3.3N14.8、Cu80.1Co3.8N16.1合金薄膜經熱處理皆有2Cu3N→6Cu+N2(g)相分解反應(相轉變),但此相分解卻易於使Cu擴散與Si反應並造成漏電流增加,雖然提高N含量能有效抑制Cu顆粒過度成長與孔洞產生而免於聚集,但未有理想阻擋Cu擴散與提升附著性之效果,其中具有較佳阻擋效果與低電阻率為Cu95.7Co4.3、Cu92.5Co1.9N5.6、Cu92.0Co2.5N5.5合金薄膜,薄膜經500˚C熱處理持溫10分鐘可分別降低為5.0 μΩcm、3.1 μΩcm、4.2 μΩcm,熱處理500˚C持溫30分鐘可分別降低為4.7 μΩcm、3.1 μΩcm、3.5 μΩcm,而Cu88.9Co3.4N7.7合金薄膜經600˚C熱處理持溫10分鐘與熱處理500˚C持溫30分鐘可分別降低為4.6 μΩcm與4.5 μΩcm,Cu87.2Co3.8N9.0合金薄膜經500˚C熱處理持溫10與30分鐘可降低電阻率為5.5 μΩcm與4.6 μΩcm並提升附著性,且Cu87.2Co3.8N9.0/SiO2/Si/Al經600˚C熱處理持溫10與30分鐘可降低漏電流且能維持熱穩定性,此合金薄膜有潛力應用於無擴散阻障層之銅製程。 另外以反應性磁控共濺鍍方式沈積CoN與Cu/CoN薄膜於p-type Si (100)晶片上,後續製程以RTA在N2/H2(5%)氛壓500 torr下進行300-800˚C恆溫5分鐘之熱處理。實驗結果以不同N2比例製備之CoN薄膜經700-800˚C熱處理5分鐘會使Co2N結晶相分解為Co結晶相,並造成薄膜表面產生許多孔洞與呈現島狀Co顆粒聚集情形;隨N2比例增加確實能逐漸提高失效溫度,而有效防止Cu擴散與Si反應並維持熱穩定性,其中以N2比例為10%、20%與50%之Cu/Co84.5N15.5/Si、Cu/Co82.2N17.8/Si與Cu/Co79.2N20.8/Si效果較佳,其失效溫度分別為675˚C、675˚C與700˚C。

並列摘要


Cu(CoN) alloy thin films were deposited on p-type Si (100) substrates by magnetron reactive co-sputtering under various ambient Ar+N2, and the films were annealed in an ambient N2+H2(5%) at a temperature between 300-700˚C using a Rapid Thermal Annealer (RTA). The sheet resistance of the film was measured by FPP, the surface morphology was observed by SEM, crystal structure was analyzed by XRD, interface diffusion was observed by TEM, magnetic property was measurement by VSM, adhesion was evaluated by Scotch Tape Test, and leakage current was measured by I-V. The effects of ambient N2 and annealing temperature on the properties of Cu(CoN) alloy thin films have been investigated, and the results showed that Cu82.3Co3.4N14.3, Cu79.9Co4.7N15.4, Cu81.4Co2.6N16.0, Cu79.3Co4.4N16.3, Cu75.8Co6.5N17.7, Cu81.9Co3.3N14.8 and Cu80.1Co3.8N16.1 thin films exhibited the decomposition (phase transformation) of 2Cu3N→6Cu+N2(g) at an elevated temperature, but the dissociation of Cu3N caused the reaction between Cu and Si, and therefore increasing the leakage current. Although a high nitrogen-content Cu(CoN) film inhibit Cu aggregation, it is unable to prevent Cu from diffusion. The Cu95.7Co4.3, Cu92.5Co1.9N5.6 and Cu92.0Co2.5N5.5 alloy thin films had better barrier properties and lower resistivities. The resistivity of Cu95.7Co4.3, Cu92.5Co1.9N5.6 and Cu92.0Co2.5N5.5 thin film was 5.0 μΩcm, 3.1 μΩcm and 4.2 μΩcm after 500˚C annealing for 10 min, and resistivity was 4.7 μΩcm, 3.1 μΩcm and 3.5 μΩcm after annealing at 600˚C for 30 min, respectively. Cu88.9Co3.4N7.7 alloy thin film exhibited a good adhesion characteristic, and had a resistivity of 4.6 μΩcm and 4.5 μΩcm when the film was annealed at 600˚C for 10 min and 500˚C for 30 min, respectively. Having annealed Cu87.2Co3.8N9.0/SiO2/Si/Al, the film remained high thermal stability and low leakage current. The film is potentially to be used in the barrierless Copper interconnection. Co-N film was also evaluated as a barrier. The Co2N was decomposed into Co, and therefore formed many voids and Co islands on the surface after annealing the film at 700-800˚C for 5 min. The film prepared in a high ambient N2 had a high failure temperature and exhibited the thermal stability to prevent Cu diffusion from reacting with Si. Cu/Co84.5N15.5/Si, Cu/Co82.2N17.8/Si and Cu/Co79.2N20.8/Si exhibited the high thermal stability and the failure temperature was 675˚C, 675˚C and 700˚C, respectively.

參考文獻


[1] S. Strehle, J.W. Bartha and K. Wetzig, “Electrical properties of electroplated Cu(Ag) thin films”, Thin Solid Films, 517 (2009) 3320.
[2] S.P. Murarka, “Metallization: Theory and practice for VLSI and ULSI”, Butterworth-Heinemann, Stoneham, (1993) 148.
[3] D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. McDevitt, W. Mostiff, A. Simon, et al., “Full Copper Wiring in a Sub-0.25-um CMOS ULSI Technology”, Tech. Dig.-Int. Electron Devices Meet., (1997) 773.
[4] C.K. Hu and J.M.E. Harper, “Copper interconnections and reliability”, Mater. Chem. Phys., 52 (1998) 5.
[5] R. Rosenberg, D.C. Edelstein, C.K. Hu and K.P. Rodbell, “ Copper metallization for high performance silicon technology”, Annu. Rev. Mater. Sci., 30 (2000) 229.

被引用紀錄


林毅崧(2014)。銀行業員工對組織變革與組織學習認知關係之個案研究─以獎酬制度為干擾變數〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2014.00520
徐正宜(2014)。醫院員工對組織文化、組織承諾及工作滿意度之分析--榮民醫療體系垂直整合模式下兩家分院為例〔碩士論文,長榮大學〕。華藝線上圖書館。https://doi.org/10.6833/CJCU.2014.00117
郭幼賢(2009)。組織變革下變革認知與工作態度之關聯性研究〔碩士論文,國立臺北大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0023-3107200916065000
林依琪(2010)。台灣勞動合作社教育訓練與組織承諾之關係-以工作特性為干擾變數〔碩士論文,國立臺北大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0023-2806201014072700
蔡群億(2012)。雲林縣國民小學校長道德領導與教師組織承諾關係之研究〔碩士論文,國立中正大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0033-2110201613510225

延伸閱讀