Title

市區電動公車換電站之區位選擇研究

Translated Titles

A Study of the Location Allocation of Battery Switch Station for Electric Bus in Urban Area

DOI

10.6342/NTU.2013.02428

Authors

劉祥宇

Key Words

電動公車 ; 換電站 ; 最佳化 ; 區位問題 ; 數學規劃 ; Electric Bus ; Battery Switch Station ; Optimalization ; Location Allocation Problem ; Mixed Integer Programming

PublicationName

臺灣大學土木工程學研究所學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

張學孔

Content Language

繁體中文

Chinese Abstract

近年來溫室氣體效應造成了氣候的劇烈變遷,其中以石化能源為主的大量消耗是溫室氣體排放日益嚴重的主因。有鑑於此,節能減碳已是各國政府推動永續發展、減緩溫室氣體效應之明確政策。在我國能源的來源絕大部分仰賴國外進口,石油危機嚴重衝擊我國的能源安全,因此我國政府也逐漸重視綠色環保問題,並推動各種綠能產業政策以降低國內對於石化能源的需求與依賴,其中包括電動車輛產業,而除了電動摩托車與輕型載具之推動,我國交通部也明確將市區電動公車作為各類運具電動化之重要先導政策。 若要健全推廣電動公車,充電設施的設置為一大議題,設置充電設施必須付出相當之建造成本,在推廣初期電動公車數量不多的情境下,以電池配送的概念取代建置充電設施以解決需求是可行方案;因而在此情境下,如何決定設置區位以及充電設施規模以滿足各階段不同規模發展需求並減少推行阻力,進而達到普及的效果,實為一重要議題。本研究主要目的係針對電動公車換電站之區位選擇問題,利用混合整數規劃模式建構一包含換電站設施成本、換電站維護成本、電池運送成本之成本模式,期能在總成本最小化目標下求解最佳換電站區位和換電站規模。 研究中並以大都會汽車客運公司為實例分析對象以驗證模式之適用性,研究結果顯示,在車隊規模汰換5%為電動公車之情境下,以電池配送概念取代各場站內建置換電站其總成本可降低23%,而19個公車場站中也僅7處需設置換電站,其中以松職站設置之換電站最具規模。敏感度分析顯示,模式目標受配送電池之運輸成本、充電設施成本之影響相當顯著。本研究建立之模式及分析結果,可作為柴油公車逐步汰換至電動公車過程中換電站區位及規模規畫設計之參考。

English Abstract

The greenhouse effect has caused the dramatic change in climate while the large consumption of fossil energy is main reason making the green house effect worse. Therefore, energy saving and carbon emission reduction has become the most important policy for governments to develop a sustainable environment and slow down the greenhouse effect. The energy resource of our country is very dependent on foreign import, so the oil crisis impacts our country’s energy security seriously. Therefore, our government has initiated and proposed a series of green energy industrial policies to reduce domestic demand of fossil energy while electric vehicles are one of the main policies. Within this EV policy, one of the most important pilot programs is the application of electric bus in the urban area. To improve the promotion of electric buses, how to build the charging facilities is a crucial issue due to its huge capital investment and maintenance cost in the early stage. Therefore, this study presents a new concept for electric bus energy supply system, i.e., a combination of the installation of battery switch stations in selected bus depots and the shipment of batteries to other bus depots without battery switch station. Based on this concept, the study applies the mixed integer programming skill to formulate a mathematical model to optimize the combination while facility location and facility scale of battery switch stations are obtained. The objective of this model is minimum the total cost which consist of the facility cost and maintenance cost of battery switch station and the transportation cost for battery shipment. This study uses Metropolitan Transport Corporation as the case study. It is found that 7 of the 19 bus depots are selected to install the battery switch stations. It is also shown that optimization results can save about 23% of total cost compared to installation of battery switch stations in all bus depots in the early stage of promoting electric bus.

Topic Category 工學院 > 土木工程學研究所
工程學 > 土木與建築工程
Reference
  1. 1. Balinski M. L., "Integer programming: methods, uses, computation”, Managemtent Science, Vol. 12, 1965, pp. 253-313.
    連結:
  2. 2. Campbell J. F., “Integer programming formulations of discrete hub location problems”, European Journal of Operational Research, Vol. 72, 1994, pp. 387-405.
    連結:
  3. 3. Drezner Z., “Dynamic facility location: the progressive p-median problem”, Location Science, Vol. 3, No. 1, 1995, pp. 1-7.
    連結:
  4. 4. Elson D. G., “Site location via mixed-integer programming”, Operational Research Quarterly, Vol. 23, No. 1, 1972, pp. 31-43.
    連結:
  5. 5. Farahani R. Z. and Asgari N., “Combination of MCDM and covering techniques in a hierarchical model for facility location: A case study”, European Journal of Operational Research, Vol. 176, 2007, pp. 1839-1858.
    連結:
  6. 6. Kuehn A. and Hamburger M., “A heuristic approach for locating warehouses”, Management Science, Vol. 10, 1963, pp. 643.
    連結:
  7. 7. Leduc S. and Schwab D., “Optimal location of wood gasification plants for methanol production with heat recovery”, International Journal of Energy Research, Vol. 32, No. 12, 2008, pp. 1080-1091.
    連結:
  8. 8. Nauss R. M., “An improved algorithm for the capacitated facility location problem”, The Journal of the Operational Research Society, Vol. 29, No. 12, 1978, pp. 1195-1201.
    連結:
  9. 9. O’kelly M. E., “A quadratic integer program for the location of interacting hub facilities”, European Journal of Operational Research, Vol. 32, 1987, pp. 393-404.
    連結:
  10. 11. Shiode S., Yeh K. Y. and Hsia H.C., “Competitive facility location problem with demands depending on the facilities”, Asia Pacific Management Review, Vol. 14, No. 1, 2009, pp. 15-25.
    連結:
  11. 13. Wu L.Y., Zhang X. S. and Zhang J. L., ”Capacitated facility location problem with general setup cost”, Computers & Operations Research, Vol. 33, 2006, pp. 1226-1241.
    連結:
  12. 19. 林楨家、孫小于,高齡者住宅社區之區位規劃模式,建築與規劃學報第十三卷第一期,頁1∼26,2012。
    連結:
  13. 20. 林楨家、郭毓菱,都市計程車招呼站區位規劃模式,運輸學刊第二十一卷第四期,頁431∼456,2009。
    連結:
  14. 21. 林楨家、謝瓊慧,以覆蓋模式分析震災臨時避難場所之配置規劃,都市與計劃第三十卷第四期,頁325∼345,2003。
    連結:
  15. 22. 邱俊傑,電動車整合服務商之商業模式與發展策略之研究,國立臺灣大學管理學院碩士在職專班國際企業管理組碩士論文,2012。
    連結:
  16. 25. 許義男,都市公共醫療設施區位規劃模型之設計與應用,國立臺北大學都市計劃研究所碩士論文,2008。
    連結:
  17. 26. 陳武正,物流中心區位選擇模式之研究,行政院國家科學委員會專題研究計畫成果報告,1998。
    連結:
  18. 27. 陳品潔,電動公車之效益評估,國立臺灣大學土木工程研究所碩士論文,2012。
    連結:
  19. 29. 陳郁文、曾國雄等人,模糊多目標區位規劃之研究:以中正國際機場消防站為例,中國行政評論第六卷第二期,頁17∼42,1997。
    連結:
  20. 30. 陳惠國等人,運輸網路分析,五南出版社,2001。
    連結:
  21. 34. 馮正民、黃新薰,城際複合物流運輸鐵路運轉中心最適區位模式,運輸計畫季刊第三十四卷第四期,頁469∼500,2005。
    連結:
  22. 35. 黃公暉、陳彥豪等人,全球電動車推動現況與發展課題,台灣經濟月刊第三十三卷第十一期,頁48∼58,2010。
    連結:
  23. 40. 盧宗成、古澤民等人,緊急救災物資配送中心區位選擇模式,運輸學刊第二十五卷第一期,頁65∼90,2013。
    連結:
  24. 41. 鍾佳欣,都市舊市區緊急性避難據點之區位配置研究,國立成功大學都市計劃研究所碩士論文,2004。
    連結:
  25. 10. Owen S. H. and Daskin M. S., “Strategic facility location: a review”, European Journal of Operational Research, Vol. 111, 1998, pp. 423-447.
  26. 12. Stollsteimer J. F., "The effect of technical change and output expansion on the optimum number, size and location of pear marketing facilities in a California pear producing region," unpublished Ph. D. thesis, University of California.
  27. 14. 王駿騏,日治時期台灣醫療之地理研究,中國文化大學地學研究所碩士論文,1998。
  28. 15. 台北市公共運輸處網址,http://www.pto.taipei.gov.tw/。
  29. 16. 行政院環保署網站,http://www.epa.gov.tw/。
  30. 17. 林千琪,都市地區國民中學學校設施區位選擇之研究,朝陽科技大學建築及都市設計研究所碩士論文,2003。
  31. 18. 林登禾、陳建安,電動巴士停靠站充電模式之研究,財團法人車輛研究測試中心,2012。
  32. 23. 洪滄浪,大都會汽車客運股份有限公司工作報告,臺北市議會第11屆第5次大會,2013。
  33. 24. 財團法人車輛研究測試中心網站,http://www.artc.org.tw/。
  34. 28. 陳皇助,台灣醫院區位選擇之決策模式-分析網路程序法之應用,元培科學技術學院經營管理研究所碩士論文,2006。
  35. 31. 陳穎萱,金酒公司台灣地區物流中心區位分析,國立交通大學運輸科技與管理學系碩士論文,2007。
  36. 32. 曾祐強、鄭凱文,全球主要國家電動車示範運行推動現況,財團法人車輛研究測試中心,2012。
  37. 33. 稅文兵、葉懷珍等人,物流配送中心動態選址模型及算法研究,計算機應用研究第二十七卷第十二期,頁4476∼4491,2010。
  38. 36. 新北市政府網站,http://www.ntpc.gov.tw/。
  39. 37. 經濟部,2012年能源產業技術白皮書,2012。
  40. 38. 經濟部能源局,經濟部能源局100年年報,2012。
  41. 39. 歐陽餘慶,電動公共汽車技術調查及其做為都市運輸工具可行性研究,交通部運輸研究所委託中華民國運輸學會研究案,1997。