透過您的圖書館登入
IP:216.73.216.122
  • 學位論文

類比式和積規則型低密度奇偶檢查碼解碼器晶片設計

IC Design of an Analog Sum-Product Decoder for Regular LDPC Codes

指導教授 : 李文達

摘要


早期就有國外學者提出因為操作於機率域的和積演算法解碼器在硬體的實現上會有成本過大的問題,故在實現上較為不易。因此本論文提出以非疊接式吉爾伯特乘法器所建構之類比式和積規則型低密度奇偶檢查碼解碼器之積體電路設計。此類比式解碼器是以低密度奇偶檢查碼作為電路設計基礎,並採用非疊接電流式吉爾伯特乘法器來實現和積演算法,並完成整個類比式和積規則型低密度奇偶檢查碼解碼器,使其在硬體的實現上可以有效的降低成本過高之問題。   最後本文共提出了兩種解碼器晶片,皆以TSMC 0.18μm 1P6M CMOS製程加以驗證。第一顆晶片包含了3932顆電晶體,其工作電壓為1.8V,晶片面積不含I/O PAD為0.1mm2,當資料吞吐量(Throughput)為8.48Mbps時,功率為1.105mW。第二顆晶片改為陣列式架構,共包含了2600顆電晶體,其工作電壓為1.8V,晶片面積不含I/O PAD為0.083mm2,當資料吞吐量為16Mbps時,功率為0.939mW。

並列摘要


In this thesis, we propose an analog sum-product decoder based on Low-Density-Parity-Check (LDPC) codes, and use Gilbert multipliers to realize the function of Sum-Product algorithm. Literatures show that the traditional LDPC decoders working at the probability domain have a major demerit on the chip’s area. Therefore, we propose a non-splice Gilbert multiplier that can decrease the chip’s area for analog sum-product LDPC decoders. We have implemented two (8, 4) LDPC Sum-Product decoders with TSMC 0.18μm 1P6M CMOS technology and operating at VDD = 1.8V. The first decoder core size is 0.1mm2 including 3932 transistor counts, and the throughput is 8.48Mb/s while power consuming 1.105mW. The second decoder modifies the former chip’s circuits so that has a smaller core size and less transistor counts. The core size of second decoder is 0.083mm2 including 2600 transistor counts, and the throughput is 16Mb/s while power consuming 0.939mW.

參考文獻


[27] 張繼偉,類比式最小和遞迴解碼器晶片設計,碩士論文,國立台北科技大學,電腦與通訊研究所,民國99年。
[1] C. Berrou, A. Glavieux, and P. Thitmajshima, “Near Shannon limit error-correcting coding and decoding; turbo-codes,” in Proc. IEEE Int. Conf. Communications, Geneva, May. 1993, pp. 1064-1070.
[2] D. J. C. MacKay and R. M. Neal, “Near Shannon-limit performance of low-density parity-check codes,” IEE Electronic Letters, vol. 32, no.18, pp. 1645-1646, Aug. 1996.
[3] S.-Y. Chung, G. D. Forney, Jr., T, J. Richardson, and R. Urbanke, “On the design of low-density parity-check codes within 0.0045dB of the Shannon limit,” IEEE Commun. Lett., vol. 5, no. 2, pp. 58-60, Feb. 2001.
[4] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans. Inform. Theory, vol. 45, pp. 399-431, Mar. 1999.

被引用紀錄


陸志鵬(2014)。類比改良補償式最小和低密度同位元校驗碼解碼器晶片設計〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2014.00877
蔡承豪(2013)。類比式停止疊代正規化對數和積低密度同位元檢查碼解碼器晶片設計〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2013.00319
張隆盛(2012)。低功率類比式低密度同位元校驗碼解碼器晶片設計〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-0908201221094600
鄭炘元(2013)。新型類比式正規化最小和低密度同位元校驗碼解碼晶片設計〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-0708201314223600

延伸閱讀