透過您的圖書館登入
IP:18.224.246.203
  • 學位論文

應用系統動態模式STELLA模擬台灣交通運輸部門溫室氣體與空氣污染物之整合減量效益

The Simulation and Co-benefits of Greenhouse Gas and Air Pollutants Reduction for Transportation Sector in Taiwan by System Dynamic Model STELLA

指導教授 : 曾昭衡

摘要


本研究使用系統動態學軟體STELLA架構台灣交通運輸部門在節能減碳與移動源管制政策下,對於溫室氣體及空氣污染物(一氧化碳(CO)、懸浮微粒(PM10)、硫氧化物(SOx)、氮氧化物(NOx)及臭氧(O3))排放產生之減量效益。並以系統動態模式模擬,比較各政策獨立執行與共同執行後之減量差異,再藉由空氣資源整合效益模型(Air Resources Co-Benefits, ARCoB model)計算評估各減量行動中,因空氣污染物減量而產生之健康效益,包括增加國民平均餘命與節省醫療支出之金額。 研究結果顯示,各減量行動於未整合(獨立執行)下,空氣污染物減量以加嚴汽車排氣標準及油品成份管制為最佳,推估至2025年,採取「完全執行模擬情境」時,空氣污染物PM10、SOX、NOX、CO及NMHC減量分別為516、361、28,527、137,046及18,139公噸/年,減量比例分別為1.78%、14.72%、10.78%、16.19%及8.39%。溫室氣體減量則以持續推動高速鐵路建設為最佳,逐年提升運量以減少私人運具的使用量於2025年採取「完全執行模擬情境」時,GHG減量為6,137千公噸/年,減量比例為11.63%。 以民眾角度進行減量行動之成本效益分析,其本益比以環保署推動LPG車全面替代計乘車(營業小客車)為最佳,至2025年時,本益比可達16.34,其外部效益可為整體社會節省9,514,787千元之醫療支出,更可增進全國人民平均壽命27.51天;LPG車替代自用小客車、電動機車及落實機車排氣定檢之本益比也分別為5.08、1.46及10.95。本益比超過1表示這些政策都是值得政府推廣;油電混合車則因售價太高,投資成本遠高於其經濟效益,本益比只有0.46。 綜合各項減量行動整合(共同執行)下至2025年,空氣污染物PM10、SOX、NOX、CO及NMHC分別減量2,761、502、31,050、172,374及33,630公噸/年,GHG則減量14,469千噸/年;未整合(獨立執行)下至2025年,空氣污染物PM10、SOX、NOX、CO及NMHC分別減量2,957、529、35,005、211,522及40,815公噸/年,GHG則減量15,237千噸/年。整合執行時,2008至2025年每年減量為未整合執行時之62%至95%。以政府角度探討減量行動整合與非整合執行下之成本效益比分別為3.36與3.76,淨效益分別為53,240,352與59,586,461千元/年。 依照「永續能源政策綱領」所訂定之減量目標,運輸部門溫室氣體排放量於2016至2020年間,若採取「主要政策承諾策略」與「完全執行模擬情境」時可回到2008年39,058千公噸/年之排放量。至2025年採取「完全執行模擬情境」時,溫室氣體排放量為38,318千公噸/年,但2000年溫室氣體排放量為30,820千公噸/年,表示溫室氣體2025年還無法回到2000年之排放量。

並列摘要


This study shows that the author used system dynamics software STELLA to construct the transportation sector in Taiwan to execute the carbon reduction and mobile source control policies for greenhouse gas and air pollutants (carbon monoxide (CO), suspended particulate (PM10), sulfur oxides (SOx) , nitrogen oxides (NOx) and ozone(O3) emissions reduction. This study compared the policies independently and jointly implements the reductions after the difference by the system dynamics model, then used the Air Resources Co-Benefits, ARCoB model to evaluate the health benefits by reduction of the operation, including increasing the average life and save the amount of medical expenses. The results showed that it has the best result to have stricter vehicle emission standards and control of oil content when the reduction operations are not integrated (independently). Estimating to year 2025, if "the complete implementation of the simulated scenario" is applied, the air pollutants PM10, SOX, NOX, CO and NMHC will be reduced around 516, 361, 28,527, 137,046 and 18,139 tons per year. The optimum Greenhouse gas emissions reduction policy continue to promote high-speed railway construction, if "the complete implementation of the simulated scenario" is applied in 2025, the GHG will be reduced 6,137 thousand tons per year and the reduction rate is 11.63%. The cost-benefit analysis for public that the promotion of clean vehicles by EPA to promote the full replacement cab LPG vehicles (business cars) has the best cost-benefit ratio to 16.34 in 2025, and the external benefits for society as a whole could save 9,514,787 thousand NT$ of medical expenses, but also to enhance the average life 27.51 days of public. The cost-benefits ratio of LPG vehicle replacement personal car and electric motor vehicles for personal use is 5.08 and 1.46. Price of hybrid vehicles due to high cost of investment is much higher than its economic benefits, so its cost-benefits ratio is only 0.46. Comprehensive integration of the reduction operations (joint implementation), in 2025, the air pollutants PM10, SOX, NOX, CO and NMHC will be reduced 2,761, 502, 31,050, 172,374 and 33,630 tons per year, and GHG will be reduced 14,469 thousand tons per year, and without integration (independently) to 2025, air pollutants PM10, SOX, NOX, CO and NMHC will be reduced 2,957, 529, 35,005, 211,522 and 40,815 tons per year, the GHG will be reduced 15,237 thousand tons per year. In accordance with the "Energy Continuity Guidelines" set by the reduction target, greenhouse gas emissions from the transport sector in 2016 and 2020, if the "major policy commitment scenario" and "complete implementation of the simulated scenario" are applied, GHG emissions could go back to 39,058 thousand tons per year in 2008.

參考文獻


[54] 吳任潔,發電廠溫排水之環境成本分析,碩士論文,國立台灣大學環境工程學研究所,台北,2003。
[55] 吳家興,以平均壽命與醫療支出評估台灣地區臭氧減量效益,碩士論文,國立台北科技大學環境規劃與管理研究所,台北,2006。
[74] 曹心雯,室內外空氣污染總暴露導致之壽命增減與醫療支出-以校區、社區及行政區為例,碩士論文,國立台北科技大學環境工程與管理研究所,台北,2009。
[75] 許哲豪,應用系統動態模式STELLA模擬臺灣溫室氣體及空氣污染物整合減量效益,碩士論文,國立台北科技大學環境工程與管理研究所,台北,2009。
[91] 蔣本基、馬鴻文,北部空品區懸浮微粒改善策略及成效研究,行政院環境保護署, 2004。

被引用紀錄


施怡瑄(2011)。建立汞流佈之系統動態學模式模擬台灣能源部門空氣污染物之整合減量效益〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2011.00529
游苓楷(2011)。以氣候相關天災之經濟損失及生命價值評估臺灣溫室氣體減量效益〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2011.00104
陳鵬宇(2012)。應用環境健康整合效益模型評估再生能源與節能之污染減量效益〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1208201213264800
洪緯廷(2012)。一氧化碳空氣品質無線監測系統之建構暨室內濃度預測模型〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1608201219392900
李柏均(2013)。空間規劃因應氣候變遷之權衡取捨與綜效之研究─以台北都會區為例〔碩士論文,國立臺北大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0023-1308201311174200

延伸閱讀