透過您的圖書館登入
IP:3.17.68.195
  • 學位論文

光體積變化描記法及血氧濃度對多病患同步監測之長時間紀錄系統

Long-term Photoplethysmography and Oxygen Saturation Recording System for Monitoring Multiple Patients

指導教授 : 林康平

摘要


傳統生理監測系統受限於電腦端之連線使得受測者移動性被限制住,並且只能單一個人量測生理資訊,無法建立多人多通道的系統架構。有鑑於此,本研究以無線傳輸生理訊號取代有線傳輸,並設計多個通道同步監測之系統,並達到長時間錄製生理訊號,觀察可能出現的潛伏性之病因,並且提供專業醫師做分析判斷。 一般血氧濃度機是以穿透式探頭進行血氧量測,容易脫落移位、長時間量測的不適感等缺點。因此本研究設計創新的『手套式』血氧濃度機,不但可解決上述之問題,同時也提升穿戴時的舒適度與便利性,以及避免外界光源影響,並且亦可達到居家應用之目的。 多通道同步監測系統由使用者端、中央控制端、監測系統端組合而成的。使用者端為自行開發的手套式血氧濃度機,主要將PPG與SpO2的生理資訊透過藍芽傳輸至中央控制端的子系統內。中央控制端是由多個子系統組合而成從端(Slave)系統,以及負責接收所有子系統資料的主端(Master)系統結合而成之單元。中央控制端能夠提供多個通道之使用者端同時量測記錄,並將所有通道的生理資訊即時儲存到監測系統端,並顯示波形。中央控制端亦可將生理資訊儲存至SD/MMC,讓整個多通道監測系統使用上更加靈活應用。 手套式探頭的量測位置有別於穿透式探頭,光的在生物組織中的路徑也不相同,無法透過血氧模擬器得到標準的校正曲線。因此量測40位受測者並以Nellcor血氧濃度機作為量測之標準,求得校正曲線。同時實驗不同位置是否影響血氧值之探討,並實際量測36位受測者血氧。 在多通道監測系統實測部分,五台使用者端同時透過藍芽傳輸至中央控制端,在10公尺之內的資料傳輸正確率為100%。 在不考慮位置的情況下帶入校正曲線求得血氧值,得到相關度為0.59,平均誤差為1.075±0.83%。實驗結果得知不同位置校正曲線亦不同,因此求得最佳位置1的校正曲線,並得到相關度為0.9163,平均誤差為0.37±0.49%。在36位受測者實測部分,相關度達0.8083,平均誤差為0.485±0.51%。

並列摘要


Traditional physiological monitoring system is subject to the computer side of the connection allows subjects to be restrict mobility, and only a single physiological measurement of personal information, people can not create multi-channel system architecture. In view of this, the present paper to replace the wireless transmission of physiological signal transmission cable, and the design of multiple-channel system for monitoring and recording physiological signals to achieve a long-term to observe the possible cause of the potential, and physicians to provide professional analysis. Machine is based on the general transmission of oxygen saturation measurement probe can only be applied to a specific location, easy to shift off a long-term measurement and other shortcomings of the discomfort. Therefore, this paper also design innovative style gloves oxygen saturation machines, not only to resolve the above issues, but also to enhance comfort when wearing and convenience and to avoid the impact of external light source, and can also be applied to achieve the purpose of home. Synchronous multi-channel monitoring system by the user unit, the central control unit, the monitoring system unit combination. The user unit of the gloves oxygen saturation for the self-developed machine-type, mainly PPG physiological and SpO2 information through the Bluetooth transmission to a central control subsystem side. Central control unit is a combination of a number of subsystems from the side (Slave) systems, as well as all sub-system responsible for receiving information on the main client (Master) system, a combination of the unit. Central control unit can provide multiple channels of user units measurements recorded at the same time, all channels physiological information storage and display waveforms to monitoring system unit . The central control unit can be stored to SD / MMC for physiological information , so that the entire multi-channel monitoring system for the application of more flexible use. Gloves measurement probe position is different from the transmission probe, the light in tissue is not the same path, is unable to get oxygen saturation simulator calibration curve standards. Therefore measured 40 subjects and Nellcor oxygen saturation measuring machine as the standard calibration curve obtained. At the same time at different positions of the experimental value is to explore the impact of oxygen. In multi-channel monitoring system for measurement of the five user units through Bluetooth transmission to a central control unit, within 10 meters of the data transmission rate is 100% correct. Without taking into account the location of the case of oxygen into the value of calibration curve obtained by correlation to 0.59, with an average error of 1.075 ± 0.83%. Results show that the calibration curve at different positions are different, therefore the best place to seek correction of a curve, and correlation to 0.9163, with an average error of 0.37 ± 0.49%. Measured in 36 normal subjects of the correlation of 0.8083, with an average error of 0.485 ± 0.51%.

參考文獻


[11]涂清源 ”建構無線傳輸與網際網路之居家看護系統”,中原大學電機碩士論文,2000
[16]張椿宏 ”整合心電圖與即時無線傳輸技術之數位視、聽診儀” 中原大學電機碩士論文 ,2005
[20]紀進鴻“四通道生理訊號儲存與回讀系統”中原大學電機碩士論文,1999
[21]陳秉淮“可攜式脈波量測及分析系統” 中原大學電機碩士論文,2006
[22]羅文煬“廣用型脈診系統設計” 中原大學電機碩士論文,2009

被引用紀錄


劉維昀(2017)。以多通道高取樣率無線傳輸架構測量脈波傳導速率〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201700788
孫祥耘(2011)。PPG生理訊號量測應用於心肺功能與有效運動評估〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201100810
林致宏(2010)。24位元血氧濃度測量系統〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201000809
范智翔(2015)。以脈波傳導特徵評估周邊動脈血管之生理訊息研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/CYCU.2015.00123
郭志強(2007)。臺北市國中小學足球運動代表隊組訓考量因素之研究〔碩士論文,國立臺灣師範大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0021-2910200810534213

延伸閱讀