透過您的圖書館登入
IP:13.58.252.8
  • 學位論文

三元熱電材料應用於微致冷晶片之研製

Fabrication of micro thermoelectric cooler with ternary thermoelectric material

指導教授 : 楊啟榮
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究以電化學沉積的方式電鍍n型與p型 Bi-Te-Se熱電材料,同時,藉由平行線量測法對電化學沉積的熱電材料,量測其熱傳導係數,並獲得相關的熱電特性。最後利用已知熱電特性的熱電材料,搭配微機電製程技術,進行微致冷晶片之研製。 以平行線量測法成功量取熱電材料的熱傳導係數,量測結果n-typed Bi-Te-Se熱電材料,其熱傳導係數為0.185 W/mK,而p-typed Bi-Te-Se熱電材料,其熱傳導係數為0.633 W/mK。藉由熱電優值公式獲得n-typed Bi-Te-Se熱電材料,其熱電優值為17.34×10-4/K,且在常溫工作環境下的ZT值為0.52;而p-typed Bi-Te-Se熱電材料,其熱電優值為53.189×10-3/K,且在常溫工作環境下的ZT值為1.596。最後,將已知熱電特性的熱電材料,藉由電化學沉積搭配微機電製程技術,成功研製出24對的微致冷晶片,其熱電接腳尺寸為600 um的方形陣列,電鍍高度約為10 um,後續將量測其致冷性能,並比較在不同對數條件下的致冷能力。

並列摘要


In this study, n-typed and p-typed Bi-Te-Se thermoelectric materials are electroplated by electrochemical deposition method. The thermal conductivity and related thermoelectric characteristics were measured by parallel line method. Finally, the n-type and p-type Bi-Te-Se materials with known properties were applied to fabricate micro-cooler by MEMS process. The thermal conductivity were measured by parallel line method. For n-typed Bi-Te-Se material, the thermal conductivity is 0.185 W/mK, and for p-typed Bi-Te-Se material, the thermal conductivity is 0.633 W/mK. The figure of merit of n-typed Bi-Te-Se material is 17.34×10-4 /K, and room-temperature ZT value is 0.52. The figure of merit of p-typed Bi-Te-Se material is 53.189×10-4 /K, and room-temperature ZT value is 1.596. Finally, micro-coolers with 24 pairs were fabricated by electrochemical deposition and MEMS techniques, in which the dimension of the thermoelectric legs is 600 m and thickness of the electroplated is 10 m. Furthermore, the comparison of the cooling capability under different conditions will be measured.

參考文獻


7. C. Tsai, R. L. Chen, C. C. L. Chen, J. Denatale, “Micromachined stack component for miniaturethermoacoustic refrigerator”, IEEE, (2002), pp. 149-151.
8. J. M. Koo, L. Jiang, L. Zhang, P. Zhou, S. S. Banerjee, T. W. Kenny, J. G. Santiago, K. E. Goodson, “Modeling of two-phase microchannel heat sinks for VISI chips”, IEEE, (2001), pp. 422-426.
9. S. Wu, J. Mai, Y. C. Tai, C. M. Ho, “Micro heat exchanger using MEMS impinging jets”, IEEE, (1999), pp. 171-176
10. C. H. Amon, J. Murthy, S. C. Yao, S. Narumanchi, C. F. Wu, C. C. Hsieh, “MEMS-enable thermal management of high-heat-flux devices EDIFICE: embedded droplet impingement for intergrated cooling of electronics.”, Experimental thermal and fluid science, (2001), pp. 231-242.
11. D. J. Yao, “In-plane MEMS thermoelectric microcooler”, Ph. D. dissertation of UCLA, USA, (2001).

延伸閱讀