透過您的圖書館登入
IP:18.119.104.238
  • 學位論文

二維及三維奈米球微影術 在光電元件與感測器上之應用

Study of 2-D and 3-D Nanosphere Lithography for Optoelectronic Device and Sensor Applications

指導教授 : 陳學禮

摘要


奈米球微影術乃是利用自組裝之方式在基板上堆疊出六方緊密週期排列奈米球,其可以把奈米球當做類似光阻之遮罩,並可藉由選擇奈米球大小來控制其週期尺寸;由於其所需設備費用及時間相對於半導體製程便宜且快速,且可應用的範圍很廣,因此是目前奈米製程技術研究的重點之一。而在奈米球的自組裝堆疊中,我們以旋鍍法堆疊出大面積緊密排列的單層奈米球,並且將其當作似光阻作用的遮罩,分別以濕式及乾式蝕刻在矽基板上製作出次波長金字塔結構的抗反射層,成功將反射率由原本的40~50%降至3%以下,另外也利用堆疊在透明基板的六方緊密週期排列單層奈米球製作出在可見光波段具高穿透表面電漿特性之金屬週期性孔洞薄膜。 而在三維蛋白石光子晶體方面,我們探討在不同環境下及奈米球表面帶電荷對堆疊的影響,讓我們對蛋白石的堆疊機制有更進一步的瞭解;另外提供一個可以快速製作二氧化矽反蛋石結構之方式,並以反蛋白石結構滲入金奈米粒子,由於要在微結構內均勻接著金奈米粒子而不聚集有一定難度,但我們找到最佳方式,製作出具三維金奈米粒子的光子晶體,此光子晶體同時具有光子能隙(PBG)及表面電漿(LSPR)之現象,而這兩個特性能個別偵測填入溶液之折射率及接著在金奈米粒子上的生物分子特性。最後我們在有機發光材料添加入光子晶體的實驗中,以液滴滴著法添加之方式,知道有機發光材料滲入光子晶體結構,則會使有機材料的發光波長在光子能隙波段會被侷限住,並且添加發光材料的蛋白石受激發光時會隨著偵測角度的不同,而使光的侷限波段改變,而且可藉由聚苯乙烯的能量轉移使發光強度增加,而能吸附發光材料的結構表面積愈多,能使發光材料能分散的表面積變大,亦能增強發光。

關鍵字

奈米球微影術

並列摘要


Nanosphere lithography (NSL) is a novel method for the fabrication of hexagonal close-packed structures by self-assembly monolayer nanosphere array on flat substrates. Here the monolayer nanospheres are taked as etching mask layer like patterned resists. Furthermore, the period and dimension can be controlled by the size of nanospheres. Because of cheap, rapid, and extensive applications, it’s one of the important nanofabrication techniques. In the fabrication of monolayer nanosphere array, we fabricate large-area monolayer nanospheres by spin coating method and using as etching mask for the fabrication of sub-wavelength pyramid anti-reflection structure on silicon substrate by wet etching and dry etching processes. And the reflectance of silicon substrates can be reduced to 3%. Besides, we fabricate periodical metal hole-arrays which have high surface plasma transmission by deposition and lift-off processes on monolayer nanospheres. And in three-dimensional (3D) opal-like photonic crystal, we investigate the influence of different environments and nanospheres with different surface charge distribution on opal structures. Besides, we provide a rapid fabrication method of fabricating silica inverse opal structure. And we try to infiltrate gold nanoparticles (Au NPs) into inverse opal. It’s hard to catch Au NPs in 3D nano structure without aggregation, but we find the optimal parameter to fabricate inverse opal structure with adhered Au NPs uniformly. This photonic crystal have both photonic band gap(PBG) and localized surface plasma resonance (LSPR) effects, and the two properties in one structure can be used to probe the refractive index of infiltrated solution and the properties of bio-molecular which adhered on Au NPs. At last, we use drop coating method to add organic luminescence material on opal and find the luminescence wavelength at photonic band gap is confined by opal structures. When the detector angle is changed, the confined luminescence wavelength of opal which added organic luminescence material is also changed. Besides, the emission intensity can be enhanced by energy transfer of polystyrene and large surface area.

並列關鍵字

Nanosphere Lithography

參考文獻


[49]林彥辰,奈米材料在灰階光罩與光子晶體製作上之研究,國立台灣大學(2005)
[39] 許宗翰,金屬矽化物與奈米材料在光電元件上應用之研究,國立台灣大學(2006)
[10] 黃楷庭,次波長微結構在表面電漿元件及太陽能電池應用之研究國立台灣大學材料所碩士論文 (2006)
[51]OLED有機電激發光材料與元件,陳金鑫,五南出版
[45]莊尚餘,金奈米粒子及奈米壓印金屬在表面電漿元件上之應用,清華大學原子科學所(2005)

被引用紀錄


許展維(2009)。具漸變折射率之光子晶體用於固態照明元件出光增益之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2009.02083

延伸閱讀