透過您的圖書館登入
IP:18.119.104.238
  • 學位論文

電子業品牌商綠色供應鏈風險評估架構之研究─以台灣某電子公司為例

A Study on A Risk Assessment Framework for Green Supply Chain of Brand Electronics Companies: Case Study of An Electronics Corporation in Taiwan

指導教授 : 胡憲倫
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究旨在利用風險評估管控的方式,來協助電子業品牌通路製造商(以下簡稱品牌商)建立一套有效的綠色電機電子產品之危害物質風險評估模式,以降低指令生效後的退貨風險,甚至相關法律的損害賠償責任,使品牌商不致因產品在出貨後,被檢測出違反RoHS指令而被罰以巨額款項並損失商譽。 本研究透過與個案品牌商訪談的方式,實際從分析個案品牌商的綠色產品實現之作業程序中,由影響RoHS的角度出發,從作業程序剖析到管控內容,進而找到會造成違反RoHS指令的5個風險因子,並透過個案提供的6,828筆綠色零組件數據資料來進行風險因子的資料蒐集,運用DEMATEL法找出5項風險評估準則間的關聯結構(Relation Structure),篩選出重要的綠色零組件風險來源,依此結果再進一步運用ANP法以計算各項風險評估準則之權重值,最後以失效模式與效應分析(FMEA)結合ANP的權重值,建立出一套風險計算模式,以求得各項風險評估準則的「加權風險優先數(weighted RPN)」,排列出6,828筆綠色零組件之風險高低,與改善活動之優先順序。 從實證結果分析可以得知「均勻材質材料組成成分宣告表(MCD)」為造成高風險群的綠色零組件總weighted RPN過高之主要關鍵風險評估準則,也是主要影響其他風險評估準則之風險因子,故為綠色零組件風險評估架構之關鍵風險指標,「進料綠色品質監測-IQC有害管制物質進料檢驗設備」次之;且「包裝材料(Package)」類別中的「貼紙」與「SPONGE泡棉」為風險值最高,「散熱片(Heatsink, Fansink)」次之。成為決策者在綠色零組件風險評估架構裡列為優先改善與監控之對象。透過本研究建立的綠色零組件風險評估模式,連接個案品牌商的進料檢驗(IQC)作業系統,以此決定高風險綠色零組件之檢測頻率,證實本研究建立的綠色零組件風險評估模式,確實可於進料品質檢驗(IQC)作業程序端,提升綠色零組件風險控管之流程效率,使進料品質檢驗(IQC)作業的成本資源能確實集中在主要的高風險零組件上,以減少IQC人員不必要的零組件檢測工作,與降低違反RoHS指令的風險,同時可增強決策結果的可靠性與科學性。

並列摘要


The objective of this study is to use risk analysis management method to help brand channels electronics manufacturers (“Brands”) to create an effective method for assessing risks involving hazardous material in green electronic products, in order to lower the risk of products being returned after the regulation is on effect, and even decrease the obligation to pay legally imposed damages. The method is to prevent shipped products being tested for violating RoHS requirements and the resulting large fines and loss of reputation. Through discussion with one of the Brands, this study actually analyzes the methods it uses to find the five risk factors stated in the RoHS regulations in its manufacturing procedures for its green component. These methods come from its operating procedures to control the content analysis created from the perspective of RoHS regulations. Further, these methods originate from data collected from 6,828 cases of assessing risk factors in green components, using the Decision Making Trial and Evaluation Laboratory (DEMATEL) method to find the relation structure among the five risk factors. Then the methods select the main origins for the risks in these green components and use the Analysis Network Methods (ANP) method to calculate the weighs of each risk analysis standards. Finally it uses the Failure Mode and Effects Analysis (FMEA) with the ANP weighs to create a method for calculating risks that allows for finding the weighted risk priority number (RPN) for each one of the risk analysis methods. As a result, it ranks the level of risk for each one of the 6,828 green components, allowing for improved prioritization of activities. From analyzing the actual result one can see that the Material Composition Declaration (MCD) can create standards for critical risk evaluation for high risk green component’s weighted RPN being too high. It also affect other major risk factors for risk assessment criteria, as it is the key risk indicators for green component in the risk assessment framework, followed by "Green quality monitoring feed-IQC controlled substances hazardous equipment". Further the stickers and sponges in packaging have the highest risk index, followed by heatsinks and fansinks. This becomes the highest prioritized object of improvement and monitoring for the decision-makers of the green components in their risk assessment framework. Through the risk assessment model for green components established by this study, along with incoming quality control (IQC) methods created by the Brand cited above, which together determine detection frequency of high risk green component, the risk assessment method for green components created by this study can use incoming quality control (IQC) working methods to improve the efficiency of the flow of risk analysis of green components. Such result can further limit the cost of performing incoming quality control (IQC) to the high risk components, reducing unnecessary component inspection by IQC staff workers, and lowering the risk of violating RoHS, and at the same time increasing reliability and scientific precision in decision result.

參考文獻


[47] 黃聯海、陳政徽、劉文雄,「綠色供應鏈管理之分析」,2006 中華民國品質學會第42屆年會暨第12屆全國品質管理研討會。
[6] Saaty, T.L., (1980a). “The Analytic Hierarchy Process,” McGraw-Hill Companies, New York.
[7] Saaty, T.L., (1980b). “The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation,” McGraw-Hill, New York.
[9] Grant, W., Handbook of Reliability Engineering and Management, McGraw-Hill Inc, New York (1988).
[18] 李明賢、王玉鳳,2006。運用FMEA鑑別ISO14001顯著環境考量面之個案研究。品質學報,13(2),159-173。

被引用紀錄


張韋豪(2011)。台灣半導體產業環境管理與碳足跡現況及生命週期評估軟體需求探討〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2011.00368
詹堯婷(2012)。中國大陸區域經濟板塊與城市定位對投資風險度影響之研究-台商傳統製造業、高科技產業與服務業之比較〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201200239
林培茵(2012)。綠色供應鏈風險管理之應用─以台灣主機板公司為例〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-0307201221201900

延伸閱讀